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ONIIER Analysis of the termodynamic profile of the atmosphere

Outline

Basic thermodynamic variables in presence of water.
Atmosphere static and potential (in)stability.

Sounding diagrams: skew-T and Thetaplot.

Some sounding-derived indices and their properties.

Forecasting with sounding-derived indices: examples & problems
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ONIIER

Analysis of the termodynamic profile of the atmosphere

Section 1

Basic thermodynamic variables in presence
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Source: http://www.its.caltech.edu/~atomic/snowcrystals/ice/ice-htm
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ONIIER Analysis of the termodynamic profile of the atmosphere

Dry air and water vapor mixture

@ Air is a mixture made by a variable part (0-4%) of H,O (mass 18) in
thermal equilibrium with a fixed proportion of other gases: 78% N
(mass 28), 21% of Oz (mass 32), 0.9% of Ar, 0.03% of COy,...
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ONIIER Analysis of the termodynamic profile of the atmosphere

Dry air and water vapor mixture

@ Air is a mixture made by a variable part (0-4%) of H,O (mass 18) in
thermal equilibrium with a fixed proportion of other gases: 78% N
(mass 28), 21% of Oz (mass 32), 0.9% of Ar, 0.03% of COy,...

@ For this reason meteorologists define “air” as a mix of 2 ideal gases:
1) DRY AIR: pg = paR4T, with Ry = 286.99 J/(kg K);

2) VAPOR: e = pyR,T, with R, = R4/0.62198 = 461.4 J/(kgK).
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ONIIER Analysis of the termodynamic profile of the atmosphere

Dry air and water vapor mixture

@ Air is a mixture made by a variable part (0-4%) of H,O (mass 18) in
thermal equilibrium with a fixed proportion of other gases: 78% N
(mass 28), 21% of Oz (mass 32), 0.9% of Ar, 0.03% of COy,...

@ For this reason meteorologists define “air” as a mix of 2 ideal gases:
1) DRY AIR: pg = paR4T, with Ry = 286.99 J/(kg K);

2) VAPOR: e = pyR,T, with R, = Ry4/0.62198 = 461.4 J/(kgK).

o Air pressure is p = pq + €; air density is p = pa + pv = pa(1 +q),
where q = py/pg = 0.622-5_ is the water vapor mixing ratio. One

p—e
can define virtual temperature T, = T(1 4 0.6q) so that p = pRqT,.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Dry air and water vapor mixture

@ Air is a mixture made by a variable part (0-4%) of H,O (mass 18) in
thermal equilibrium with a fixed proportion of other gases: 78% N
(mass 28), 21% of Oz (mass 32), 0.9% of Ar, 0.03% of COy,...

@ For this reason meteorologists define “air” as a mix of 2 ideal gases:
1) DRY AIR: pg = paR4T, with Ry = 286.99 J/(kg K);

2) VAPOR: e = pyR,T, with R, = R4/0.62198 = 461.4 J/(kgK).

o Air pressure is p = pq + €; air density is p = pa + pv = pa(1 +q),
where q = py/pa = 0.622& is the water vapor mixing ratio. One
can define virtual temperature T, = T(1 4 0.6q) so that p = pRqT,.

@ The maximum quantity of water vapor (before condensation) depends
only by the temperature, via the saturation vapor pressure, simplified

by: esar(T) = 6.11 - eT3273. Relative humidity is RH = 100 - ——.
esat(T)
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ONIIER Analysis of the termodynamic profile of the atmosphere

Dry air and water vapor mixture

@ Air is a mixture made by a variable part (0-4%) of H,O (mass 18) in
thermal equilibrium with a fixed proportion of other gases: 78% N
(mass 28), 21% of Oz (mass 32), 0.9% of Ar, 0.03% of COy,...

@ For this reason meteorologists define “air” as a mix of 2 ideal gases:
1) DRY AIR: pg = paR4T, with Ry = 286.99 J/(kg K);

2) VAPOR: e = pyR,T, with R, = R4/0.62198 = 461.4 J/(kgK).

o Air pressure is p = pq + €; air density is p = pa + pv = pa(1 +q),
where q = py/pa = 0.622% is the water vapor mixing ratio. One
can define virtual temperature T, = T(1 4 0.6q) so that p = pRqT,.

@ The maximum quantity of water vapor (before condensation) depends
only by the temperature, via the saturation vapor pressure, simplified
by: ecat(T) = 6.11 - e T35 Relative humidity is RH = 100 - ;.

@ In NE Italy g varies between a minimum of 1g/kg to a maximum of about
22 g/kg. Note also that H2O is lighter than dry air (molecular mass of 18 vs. 29):

the more moist air is, the less dense it becomes.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Saturation diagram: the point of view of water

The saturated vapour pressure and the dry adiabatic process
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ONIIER Analysis of the termodynamic profile of the atmosphere

Saturation diagram: the point of view of water
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When air is lifted adiabatically, it follows a dry adiabat until saturation occurs at
the Lifted Condensation Level temperature, T, ¢y, then it follows a wet adiabat.
In conclusion, air is a gas mixture defined by 4 variables: p, T, p plus a variable

for moisture, like g or RH or T4 or dew-point depressure (T7'— Ty). ..
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ONIIER Analysis of the termodynamic profile of the atmosphere

The point of view of the air parcel

Adiabatcfting ofaparcel and some variable defintions When the air parcel is
g lifted adiabatically it
follows a dry adiabat until
g g . LCL. If from LCL the

parcel sinks down

z &1 pseudo-adiabatically along
) | a wet adiabat (adding
moisture to remain
B A ... | saturated) then it reaches
g \\ it the initial level at the
i o 1 — 2:, M M T:'o wet—bulb temperature, T,,.

TIq
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ONIIER Analysis of the termodynamic profile of the atmosphere

The point of view of the air parcel

Adiabatcfting ofaparcel and some variable defintions When the air parcel is
lifted adiabatically it
follows a dry adiabat until
LCL. If from LCL the
parcel sinks down
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However, if from LCL it is /;'[;(‘Jted along a wet pseudo-adiabat until all moisture is
condensed and removed (g = 0) and then it sinks down at the initial level

through a dry adiabat, it will reach the equivalent temperature, T.. “Equivalent”
because it considers the warming due to the latent heat of condensation released
by all the initial vapor.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Referring everything to a standard level

To make things more
comparable, temperatures
can be referred to the
standard level (1000 hPa).
Bringing the parcel at
1000 hPa along a dry
adiabat defines the potential
temperature, ©.

The dry adiabat used to
define T, intersects the
1000 hPa level at the

: , ‘ ; | equivalent potential

Adiabatic lifting of a parcel and some variable definitions

plhPal

Ta temperature, O,.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Referring everything to a standard level

To make things more
comparable, temperatures
can be referred to the
standard level (1000 hPa).
Bringing the parcel at
1000 hPa along a dry
adiabat defines the potential
temperature, ©.

The dry adiabat used to
define T, intersects the
1000 hPa level at the

: , ‘ ; | equivalent potential

-20 0 20 40 60

Ta temperature, O,.
Adding moisture till saturation at the initial level [q = gur = 0.622 et (T)/(p — esa:(T))] @nd

doing the same process done for ©. defines the saturated equivalent potential
temperature, Oes.

Adiabatic lifting of a parcel and some variable definitions

plhPal
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ONIIER Analysis of the termodynamic profile of the atmosphere

Referring everything to a standard level

To make things more
comparable, temperatures
can be referred to the
standard level (1000 hPa).
Bringing the parcel at
1000 hPa along a dry
adiabat defines the potential
temperature, ©.

The dry adiabat used to
define T, intersects the
1000 hPa level at the

: , ‘ ; | equivalent potential

-20 0 20 40 60

Ta temperature, O,.
Adding moisture till saturation at the initial level [q = gur = 0.622 et (T)/(p — esa:(T))] @nd

doing the same process done for ©. defines the saturated equivalent potential
temperature, @¢s. Cooling the initial air until saturation conserving e (i.e.

starting saturated from Ty) and doing the same process defines the dew-point
equivalent potential temperature, @q.

Adiabatic lifting of a parcel and some variable definitions

plhPal
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ONIIER Analysis of the termodynamic profile of the atmosphere

3 transformations: potential, equivalent and wet-bulb

@ Temperatures at the air parcel level: T4, T,, and T.
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3 transformations: potential, equivalent and wet-bulb

@ Temperatures at the air parcel level: T4, T,, and T.
@ Bringing air to the 1000 hPa level:
e using a dry adiabatic process (potential transformation): © (or ©,...).
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ONIIER Analysis of the termodynamic profile of the atmosphere

3 transformations: potential, equivalent and wet-bulb

@ Temperatures at the air parcel level: T4, T,, and T.
@ Bringing air to the 1000 hPa level:
e using a dry adiabatic process (potential transformation): © (or ©,...).
e using a saturated pseudo-adiabatic lifting until g = 0, followed by a dry
adiabatic sinking (equivalent transformation):

eed = ee(pa Td7 q)r 68(p7 Ta q) and ees = ee[pa Ta Qsat(T)]
(note that © depends only by p and T!), where (Bolton 1980):

1 0.2854 (1—0.28q) 140.81 (73375 7254)
ﬂ) .eq( 9 TrcL

Oe(p, T,q) =T (
P

Trc(T,e) 2840 + 55 (2)
;€)=
ket 3.5 In(T) — In(e) — 4.805
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ONIIER Analysis of the termodynamic profile of the atmosphere

3 transformations: potential, equivalent and wet-bulb

@ Temperatures at the air parcel level: T4, T,, and T.
@ Bringing air to the 1000 hPa level:
e using a dry adiabatic process (potential transformation): © (or ©,...).
e using a saturated pseudo-adiabatic lifting until g = 0, followed by a dry
adiabatic sinking (equivalent transformation):
Ocd = Oc(p; Td,q), Oclp, T,q) and O = Oc[p, T, sar(T)]
(note that ©¢ depends only by p and T!), where (Bolton 1980):

Oulp T,a) =T ( (1)

1 0.2854 (1—0.28q) 140.81 (ﬂfzsz:)
ooo> K o EL

P
Trc(T,e) 2840 + 55 (2)
;€)=
ket 3.5 In(T) — In(e) — 4.805

e using a saturated pseudo-adiabat sinking one find the wet-bulb
potential temperatures (wet-bulb transformation): ©,4, ©, and ©,,
used mainly by French people.
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ONIIER Analysis of the termodynamic profile of the atmosphere

3 transformations: potential, equivalent and wet-bulb

@ Temperatures at the air parcel level: T4, T,, and T.
@ Bringing air to the 1000 hPa level:
e using a dry adiabatic process (potential transformation): © (or ©,...).
e using a saturated pseudo-adiabatic lifting until g = 0, followed by a dry
adiabatic sinking (equivalent transformation):
Ocd = Oc(p; Td,q), Oclp, T,q) and O = Oc[p, T, sar(T)]
(note that ©¢ depends only by p and T!), where (Bolton 1980):

Oulp T,a) =T ( (1)

1 0.2854 (1—0.28q) 140.81 (M,ZM)
ooo> K o EL

P
Trc(T,e) 2840 + 55 (2)
;€)=
ket 3.5 In(T) — In(e) — 4.805

e using a saturated pseudo-adiabat sinking one find the wet-bulb
potential temperatures (wet-bulb transformation): ©,4, ©, and ©,,
used mainly by French people.

There are 3 correspondences: Ty <> Ocd < Oud,
Tw < Of < O,
T < O <> Os.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Dry, moist and pseudo-saturated adiabatic processes

e Dry adiabatic: air is considered dry (neglecting the vapor enthalpy)

No saturation (q = qo = constant) and ¢, = Cpd = 7/2R4 (dry air is biatomic) 3)
1000\ Rd/pd 1000 2/7 .
Invariant : ©(T, p) = (T) - <7) =(T)- <7 , Tin[K] (4)
p p
dT g
LapseRate: — — =Ty = — =~ 9.76 K/km (5)
dz Cpd

by Agostino Manzato 9



ONIIER Analysis of the termodynamic profile of the atmosphere

Dry, moist and pseudo-saturated adiabatic processes

e Dry adiabatic: air is considered dry (neglecting the vapor enthalpy)

No saturation (q = qo = constant) and ¢, = Cpd = 7/2R4 (dry air is biatomic) 3)
1000\ Rd/ pd 1000\ 2/7
Invariant : ©(T,p) =(T) - [ — =(T) - — , Tin[K] (4)
p p
dT g
LapseRate: — — =Ty = — =~ 9.76 K/km (5)
dz Cpd

@ Moist adiabatic: air never saturated but vapor is considered
No saturation (q = qo = constant) and mcp = mgcpg + mycpy = My7/2Ry + my4R, (vapor is triatomic) (6

2 1+Rv/Ryap
(Rg+Rvap)/(cpg+cpvdo) — (7). (1000) 7 1+§ Ry /Rqdo @
P

The moist adiabat (Paluch 1979) approximates the dry adiabat as much as 8/7 =2 1, that is why it is often neglected.

1000
Invariant : ©pauen(T, P, q0) = (T) - <7)
P
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ONIIER Analysis of the termodynamic profile of the atmosphere

Dry, moist and pseudo-saturated adiabatic processes

e Dry adiabatic: air is considered dry (neglecting the vapor enthalpy)

No saturation (q = qo = constant) and ¢, & ¢,y = 7/2Ry (dry air is biatomic) 3)
1000\ Rd/ pd 1000\ 2/7
Invariant : ©(T, p) = (T) - (*) =(T)- (*) , Tin[K] (4)
p p
dT g
LapseRate: — — =Ty = — =~ 9.76 K/km (5)

d
dz Cpd

@ Moist adiabatic: air never saturated but vapor is considered

No saturation (q = qo = constant) and mcp = mgcpg + mycpy = My7/2Ry + my4R, (vapor is triatomic) (6
2 14Ry/Ryap
1000\ (Ra+Rvd0) /(cpd+<py do) 1000\ 7 11 By /ey
Invariant : ©p,uep(T, P, go) = (T) - <7) =(T)- (7) 7 "v/Rd90 (7
p p

The moist adiabat (Paluch 1979) approximates the dry adiabat as much as 8/7 =2 1, that is why it is often neglected.

@ Saturated (or wet) pseudo-adiabatic: air is always saturated and
condensate falls out of the lifted parcel

saturation q = gsat(p, T), and cpjig = 0 andcpjce = 0 (8)

Invariant : ©¢(T, p, q) = equation(1) 9)
dT

LapseRate : — e Fs(p,q) 2 5 + 8K/km (low troposphere + 500 hPa) (10)
z

The last is called “pseudo” because it is not reversible (rainfallz. _
y Agostino Manzato 9
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Analysis of the termodynamic profile of the atmosphere

Section 2

Atmosphere static and potential

pressure (hPa]

(in)stability

Theta_ processes
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ONIIER Analysis of the termodynamic profile of the atmosphere

The Lifted Parcel Theory

It is based on the following assumptions:
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ONIIER Analysis of the termodynamic profile of the atmosphere

The Lifted Parcel Theory

It is based on the following assumptions:

@ the initial parcel rises along a dry adiabat until it becomes saturated;
afterward it rises along a saturated pseudo-adiabat. “Adiabatically”
means without exchange of heat between parcel and environment;
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The Lifted Parcel Theory

It is based on the following assumptions:

@ the initial parcel rises along a dry adiabat until it becomes saturated;
afterward it rises along a saturated pseudo-adiabat. “Adiabatically”
means without exchange of heat between parcel and environment;

@ the rising parcel does not mix with the environment (no entrainment
and no dilution);
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ONIIER Analysis of the termodynamic profile of the atmosphere

The Lifted Parcel Theory

It is based on the following assumptions:

@ the initial parcel rises along a dry adiabat until it becomes saturated;
afterward it rises along a saturated pseudo-adiabat. “Adiabatically”
means without exchange of heat between parcel and environment;

@ the rising parcel does not mix with the environment (no entrainment

and no dilution);
@ the environment is in hydrostatic equilibrium, i.e. dp _ —gp and the
Yy q dz F
parcel pressure is always equal to the environment pressure at the

same height (pressure perturbations are neglected);
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ONIIER Analysis of the termodynamic profile of the atmosphere

The Lifted Parcel Theory

It is based on the following assumptions:

@ the initial parcel rises along a dry adiabat until it becomes saturated;
afterward it rises along a saturated pseudo-adiabat. “Adiabatically”
means without exchange of heat between parcel and environment;

@ the rising parcel does not mix with the environment (no entrainment
and no dilution);

© the environment is in hydrostatic equilibrium, i.e. ﬁ—':z’ = —gp and the
parcel pressure is always equal to the environment pressure at the
same height (pressure perturbations are neglected);

@ in the simplest version (conserving ©.), during the saturated
pseudo-adiabat the condensed water falls out (so there is no
condensate load and no latent heath of freezing).

P.S. Otherwise one could parametrize the liquid water—to—ice transition and consider the load of condensed water
(which reduce buoyancy) and the latent heat of freezing (which increase buoyancy). In such a case O is not conserved
and buoyancy is computed using the virtual-cloud temperature of the parcel, T, (see.Manzato and Morgan 2003).
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ONIIER Analysis of the termodynamic profile of the atmosphere =

Parcel buoyancy

During its inviscid (no friction) lifting the parcel will experience the
following vertical acceleration (called Archimedes buoyancy):
dw 1 dp 1 pe(z) — pp(2)
Bz)= ¢, = dz—g——pp-(—gpe)—g—g @)
where w(z) is the parcel vertical velocity, p, and p. are the parcel and
environment density respectively. The parcel will continue to rise if it is
less dense than the surrounding environment.

(11)
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ONIIER Analysis of the termodynamic profile of the atmosphere

Parcel buoyancy

During its inviscid (no friction) lifting the parcel will experience the
following vertical acceleration (called Archimedes buoyancy):
dw 1 dp 1 pe(z) — pp(2)

(z) = Fr —p*p'g—g = —p*p‘(—gpe)—g—gw (11)
where w(z) is the parcel vertical velocity, p, and p. are the parcel and
environment density respectively. The parcel will continue to rise if it is
less dense than the surrounding environment. Approximating the air as
dry, then pp = ppg = p/(Rd - Tp) and pe = peg = p/(Rq - Te), so that:
Tp(z) — Te(2)
B(z) =g T.02)

In this approximation the parcel will continue to rise if it is warmer than
environmental air and B(z) does not depend on environmental RH above.

12

(12)
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ONIIER Analysis of the termodynamic profile of the atmosphere

Parcel buoyancy

During its inviscid (no friction) lifting the parcel will experience the
following vertical acceleration (called Archimedes buoyancy):
dw 1 dp 1 pe(z) — pp(2)

B(z) = Fr —p*p'g—g = —p*p‘(—gpe)—g:gw (11)
where w(z) is the parcel vertical velocity, p, and p. are the parcel and
environment density respectively. The parcel will continue to rise if it is
less dense than the surrounding environment. Approximating the air as
dry, then pp = ppg = p/(Rd - Tp) and pe = peg = p/(Rq - Te), so that:
To(2) — Te(2)

Te(2)

In this approximation the parcel will continue to rise if it is warmer than

environmental air and B(z) does not depend on environmental RH above.

Instead, if one would consider also the vapor contribution, then he can replace the normal temperatures with the virtual

B(z)Xg (12)

temperatures (called the “virtual correction”), but then he should also conserve © p,c, instead of the simpler potential

temperature © during the “moist” adiabat. . .In both cases, during the saturated pseudo-adiabat O, is consgrvi{j.ost_ o Manzato 12
y Agostin nz.



ONIIER Analysis of the termodynamic profile of the atmosphere

The vertical profile of the buoyancy and its integral

Different buoyancy evaluations for the same sounding
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Equilibrium Level, EL.
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ONIIER Analysis of the termodynamic profile of the atmosphere

The vertical profile of the buoyancy and its integral

Different buoyancy evaluations for the same sounding

Taking a small part of
environment as ‘“initial
parcel” and applying the
Lifted Parcel Theory, it may
happen that the parcel will

altitude z[m]

become buoyant [i. e.
B(z) > 0], from its Level of
Free Convection, LFC, to its
Equilibrium Level, EL.

T T T T T T T T
-0.10 -005 000 005 010 015 020 025

specific buoyancy force B [m/sh2]

Since B(z) = ‘fi—"t” =w- ‘31";, integrating B(z) along the vertical profile one obtains

a squared vertical velocity, i.e. a kinetic energy. The Convective Available

Potential Energy, CAPE, is obtaine(zi integrating the buoyancy from LFC to EL:
*ZEL
CAPE= B(z) - dz = 1/2w? (13)

Y ZLFC by Agostino Manzato 13



ONIIER Analysis of the termodynamic profile of the atmosphere Sz

Instability Inhibition and trigger mechanisms

Starting from an initial level z; of an atmospheric profile, in case that the
lifted air becomes more dense than the environment, one can think that an
external agent will provide the energy (forcing) needed to —eventually—
reach its LFC. This energy is the Convective Inhibition, CIN:

Z1FC
CIN= / B(z)-dz <0 (14)

Jzg
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ONIIER Analysis of the termodynamic profile of the atmosphere =

Instability Inhibition and trigger mechanisms

Starting from an initial level z; of an atmospheric profile, in case that the
lifted air becomes more dense than the environment, one can think that an
external agent will provide the energy (forcing) needed to —eventually—
reach its LFC. This energy is the Convective Inhibition, CIN:
Z FC

CIN= B(z)-dz<0 (14)
The integral of the negative bub)fgmcy in the low levels could be quite large
(e.g. CIN= 100 + 300 J/kg) in comparison with the integral of the positive
buoyancy above LFC (e.g. CAPE 21000 J/kg). Hence, the occurrence of
a trigger mechanism that lifts the low-level air to its LFC to start
Convective Initiation is a key factor of thunderstorms forecasting.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Instability Inhibition and trigger mechanisms

Starting from an initial level z; of an atmospheric profile, in case that the
lifted air becomes more dense than the environment, one can think that an
external agent will provide the energy (forcing) needed to —eventually—
reach its LFC. This energy is the Convective Inhibition, CIN:
Z FC

CIN= B(z)-dz <0 (14)
The integral of the negative bub)fgmcy in the low levels could be quite large
(e.g. CIN= 100 + 300 J/kg) in comparison with the integral of the positive
buoyancy above LFC (e.g. CAPE 21000 J/kg). Hence, the occurrence of
a trigger mechanism that lifts the low-level air to its LFC to start
Convective Initiation is a key factor of thunderstorms forecasting.
Phenomena that can act as Cl trigger include: cold fronts, orographic
lifting, convergence flows and breezes, low-level jets, thermic boundaries
(e.g. sunset boundary advection, sea/land PBL gradients, cold pools of
previous convection, bores,...), drylines advection, lake/lagoons

evaporation, any vertically-developed roll having sufficient w. .. _
by Agostino Manzato 14



ONIIER Analysis of the termodynamic profile of the atmosphere

Operational definition of potential instability

If an atmospheric profile has at least a parcel in the low levels for which it
is possible to find a LFC then the profile is said to be potentially unstable.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Operational definition of potential instability

If an atmospheric profile has at least a parcel in the low levels for which it
is possible to find a LFC then the profile is said to be potentially unstable.
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Hence potential instability is a property inherently related to the Lifted
Parcel Theory, applied to a level (initial parcel) of the atmospheric profile
and comparing its ascent with the temperature profile above it.

Potential instability is a characteristic of the whole profile, with respect to
very large displacement A z of one of his low levels, because LFC could be
much higher than the initial level zy (e.g. 2o = 200 m and LFC= 2200 m,
hence Az =2000m).
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Operational definition of potential instability

If an atmospheric profile has at least a parcel in the low levels for which it
is possible to find a LFC then the profile is said to be potentially unstable.
Hence potential instability is a property inherently related to the Lifted
Parcel Theory, applied to a level (initial parcel) of the atmospheric profile
and comparing its ascent with the temperature profile above it.

Potential instability is a characteristic of the whole profile, with respect to
very large displacement A z of one of his low levels, because LFC could be
much higher than the initial level zy (e.g. 2o = 200 m and LFC= 2200 m,
hence Az =2000m).

The condition that there is at least one atmospheric level for which it is
possible to find a LFC is equivalent to say that that level (chosen as initial
parcel) has CAPE> 0. As we will see on the Thetaplot diagram, that is
equivalent to say that the atmospheric profile has a low-level ©,

Ocliow = ©e(20), which is higher then a mid-level O, Ocs|mid, i-€.

MaxBuoyancy= Oc¢|iow — Oes|mia > 0. (15)
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ONIIER Analysis of the termodynamic profile of the atmosphere

Classic static instability definition

A layer of an atmospheric profile is said to be absolutely stable if its lapse

rate decreases less than that of the saturated pseudo-adiabat, i.e.
r= _‘é; < s =2 5K/km.
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Classic static instability definition

A layer of an atmospheric profile is said to be absolutely stable if its lapse

rate decreases less than that of the saturated pseudo-adiabat, i.e.
= daT

dz

< s =2 5K/km. A layer of an atmospheric profile is said to be
absolutely unstable (or superadiabatic) if its lapse rate decreases more
than that of the dry adiabat, i.e. I = -4L > 'y = 9.8K/km.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Classic static instability definition

A layer of an atmospheric profile is said to be absolutely stable if its lapse
rate decreases less than that of the saturated pseudo-adiabat, i.e.

r:_dT

77 <T's =5K/km. A layer of an atmospheric profile is said to be

absolutely unstable (or superadiabatic) if its lapse rate decreases more

than that of the dry adiabat, i.e. I = -4L > 'y = 9.8K/km.

A layer of an atmospheric
profile is said to be
conditionally stable if its
lapse rate is in between
the dry and saturated

adiabat, i.e. Ts < < Ty.

Lifting the bottom of the
layer it will become
unstable if it is saturated,
but will remain stable if it
follows a dry adiabat.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Potential vs. static instability

Static instability is a characteristic of part (a layer) of an atmospheric
profile, with respect to small displacements of its bottom, in that sense it
is very different from the potential instability of the entire profile, that
could need a large displacement of one of its low levels.
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Static instability is a characteristic of part (a layer) of an atmospheric
profile, with respect to small displacements of its bottom, in that sense it
is very different from the potential instability of the entire profile, that
could need a large displacement of one of its low levels.

When a layer is absolutely stable, I < I's, it means that ddeze > 0. Itis even
more true that % > 0, hence it is possible to define the Brunt-Vaisala

gdoe
©dz’

frequency N= that is very useful to study PBL, gravity waves. ..
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When a layer is absolutely stable, I < I's, it means that ddeze > 0. Itis even
more true that % > 0, hence it is possible to define the Brunt-Vaisala

gde
©dz’
When a layer is conditionally unstable, I'c < T < Iy, it means that

% < 0 but ((11—(;) > 0, hence it is still possible to define the Brunt-Vaisala
frequency. The conditional instability (i.e. %—eze < 0) does not guarantee

the bottom of the layer will have a LFC, but that depends on its moisture.

frequency N= that is very useful to study PBL, gravity waves. ..
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ONIIER Analysis of the termodynamic profile of the atmosphere

Potential vs. static instability

Static instability is a characteristic of part (a layer) of an atmospheric
profile, with respect to small displacements of its bottom, in that sense it
is very different from the potential instability of the entire profile, that
could need a large displacement of one of its low levels.

When a layer is absolutely stable, I < I's, it means that ddeze > 0. Itis even
more true that % > 0, hence it is possible to define the Brunt-Vaisala

gdoe
©dz'
When a layer is conditionally unstable, I'c < T < Iy, it means that

% < 0 but ((11—(;) > 0, hence it is still possible to define the Brunt-Vaisala
frequency. The conditional instability (i.e. %—eze < 0) does not guarantee
the bottom of the layer will have a LFC, but that depends on its moisture.
When a layer is absolutely unstable it will be lifted even by a very small
perturbation (without needs of any external forcing), so that it is the kind
of instability usually defined in physics. ' > 'y means (é—cj < 0anditis no
more possible to define the Brunt-Vaisala frequency.

frequency N= that is very useful to study PBL, gravity waves. ..
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QSIS Analysis of the termodynamic profile of the atmosphere MEpERT

Section 3

Sounding diagrams: skew-T and Thetaplot
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ONIIER Analysis of the termodynamic profile of the atmosphere ez

Global homologation of thermodynamic diagrams. ..

The atmospheric profiles are usually not shown on a normal p vs. T (or z
vs. T) diagram as seen until now, but are shown on specific
thermodynamic diagrams. In the past many different diagrams were
proposed: Neuhoff (1900), Tephigram (Shaw, 1922), Stiive (1927),
Aerogram (Refsdal, 1935), Pastagram (Bellamy, 1945), skew—T
(Herlofson, 1947). .. Today, in 99.999% of cases it is used the skew—T
diagram, but | will show you also the Theta—Plot diagram (Morgan, 1992),
which | personally believe to be the most useful.
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vs. T) diagram as seen until now, but are shown on specific
thermodynamic diagrams. In the past many different diagrams were
proposed: Neuhoff (1900), Tephigram (Shaw, 1922), Stiive (1927),
Aerogram (Refsdal, 1935), Pastagram (Bellamy, 1945), skew—T
(Herlofson, 1947). .. Today, in 99.999% of cases it is used the skew—T
diagram, but | will show you also the Theta—Plot diagram (Morgan, 1992),
which | personally believe to be the most useful.

In the approximation of dry air and hydrostatic equilibrium it is easy to
derive the hypsometric or thickness eq. of a layer with T(z) mean temp.:

P_ &
Ina— RaT(E) (z2 — z1) (16)
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Global homologation of thermodynamic diagrams. ..

The atmospheric profiles are usually not shown on a normal p vs. T (or z
vs. T) diagram as seen until now, but are shown on specific
thermodynamic diagrams. In the past many different diagrams were
proposed: Neuhoff (1900), Tephigram (Shaw, 1922), Stiive (1927),
Aerogram (Refsdal, 1935), Pastagram (Bellamy, 1945), skew—T
(Herlofson, 1947). .. Today, in 99.999% of cases it is used the skew—T
diagram, but | will show you also the Theta—Plot diagram (Morgan, 1992),
which | personally believe to be the most useful.

In the approximation of dry air and hydrostatic equilibrium it is easy to
derive the hypsometric or thickness eq. of a layer with T(z) mean temp.:

P2 g
In—==——2— (20— 71 16
P1 Rd T(Z) ( ) ( )
From this equation it is possible to see that the height z is approximately
proportional to the opposite of the natural logarithm of pressure p. Hence,

on the ordinate it will be shown —In(p/1000).
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Analysis of the termodynamic profile of the atmosphere

/@ On the skew-T diagram the abscissa
= is turned 45°, so that isotherms are
no more vertical lines, but are
skewed of 45 degree to the right.
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ONIIER Analysis of the termodynamic profile of the atmosphere

- @ On the skew-T diagram the abscissa
is turned 45°, so that isotherms are
no more vertical lines, but are

% skewed of 45 degree to the right.
~“le The dry adiabats (iso-© lines) here
“°1are the orange lines, slanted to the
left from surface upward. In the low
levels they are almost straight.
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ONIIER Analysis of the termodynamic profile of the atmosphere

A Skew-T chart

&\ AN

. # @ On the skew-T diagram the abscissa
% is turned 45°, so that isotherms are
no more vertical lines, but are
skewed of 45 degree to the right.
The dry adiabats (iso-© lines) here
are the orange lines, slanted to the
left from surface upward. In the low
levels they are almost straight.
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The saturated pseudo-adiabats
(iso-O¢ lines) are shown here as the
green curves, going toward left from
surface upward.
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ONIIER Analysis of the termodynamic profile of the atmosphere

A Skew-T chart
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On the skew-T diagram the abscissa
is turned 45°, so that isotherms are
no more vertical lines, but are
skewed of 45 degree to the right.
The dry adiabats (iso-© lines) here
are the orange lines, slanted to the
left from surface upward. In the low
levels they are almost straight.
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The saturated pseudo-adiabats
(iso-O¢ lines) are shown here as the
green curves, going toward left from
surface upward.

The iso-q lines are the dashed blue
lines, going toward right from
surface upward.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Skew-T graphical explanation

100

150

200

500-

700+

925

1000

PP FEFF F

The atmosphere
profile is drawn
reporting at each
pressure level T(p)
and Tq4(p).

Usually also the
horizontal-wind
profile is shown on the
right side.
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ONIIER Analysis of the termodynamic profile of the atmosphere

A potentially unstable sounding shown on a Skew-T

28-jun-1998,12:00:00 Skew-t plot for rds16044 (28-Jun-1998,11:00:00).
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ONIIER Analysis of the termodynamic profile of the atmosphere

A potentially unstable sounding shown on a Skew-T

28-jUn—-1998,12:00:00 Skew-t plot for rds16044 (28-Jun—1998,11:00:00). If the mean air in the
lowest levels (note the

superadiabatic surface) is
lifted along a dry adiabat
until LCL and then along a
saturated pseudo-adiabat, a
LFC can be found, hence
CAPE> 0. Note that it is
needed some forcing to
overtake the CIN area.
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ONIIER Analysis of the termodynamic profile of the atmosphere

A potentially unstable sounding shown on a Skew-T

28-Jun-1998,12:00:00 Skew-t plot for rds16044 (28-Jun—1998,11:00:00). If the mean air in the
lowest levels (note the
superadiabatic surface) is
lifted along a dry adiabat
until LCL and then along a
saturated pseudo-adiabat, a
LFC can be found, hence
CAPE> 0. Note that it is
needed some forcing to
overtake the CIN area.
The temperature difference

% between the lifted parcel
and the environment at

wosmgia p — 500 hPa is the Lifted

=50MS

R Index (Galway 1956).

S eereeree

e

by Agostino Manzato 23



ONIIER Analysis of the termodynamic profile of the atmosphere

A Theta—plot chart (made by the NCAR “Zebra” software)

@ On the Thetaplot diagram the
abscissa is ©,, so that saturated
pseudo-adiabats (iso-©.) are
vertical lines.

250 270 290 310 33 350 370 390

Equivalent Potential Temperature (K)
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ONIIER Analysis of the termodynamic profile of the atmosphere

A Theta—plot chart (made by the NCAR “Zebra” software)

@ On the Thetaplot diagram the
abscissa is ©,, so that saturated
pseudo-adiabats (iso-©.) are
vertical lines.

@ The isotherms are no more straight
lines, but are curves (white in this
example) going to the right from
surface upward.
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ONIIER Analysis of the termodynamic profile of the atmosphere

A Theta—plot chart (made by the NCAR “Zebra” software)

@ On the Thetaplot diagram the
abscissa is ©,, so that saturated
pseudo-adiabats (iso-©.) are
vertical lines.

-10095 -90 -85 -80 -75 -70 -65 -60 -55

@ The isotherms are no more straight
lines, but are curves (white in this
example) going to the right from
surface upward.

@ The dry adiabats (iso-© lines) are
the blue curves, going toward left
from surface upward. At low
temperatures they are almost
vertical.
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ONIIER Analysis of the termodynamic profile of the atmosphere

A Theta—plot chart (made by the NCAR “Zebra” software)

@ On the Thetaplot diagram the
abscissa is ©,, so that saturated
pseudo-adiabats (iso-©.) are
vertical lines.

-10095 -90 -85 -80 -75 -70 -65 -60 -55

@ The isotherms are no more straight
lines, but are curves (white in this
example) going to the right from
surface upward.

@ The dry adiabats (iso-© lines) are
the blue curves, going toward left
from surface upward. At low
temperatures they are almost
vertical.

Wl © [ he iso-q lines are the dashed

o v ? green lines, going toward right from

surface upward. by Agostino Manzato 24




5-sep-2013,11:00:00 Theta plot (rds16044). On each level of a
zp Theta-plot these 3
values are drawn:
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Analysis of the termodynamic profile of the atmosphere

5-sep-2013,11:00:00 Theta plot (rds16044). On each level of a
z p ¥
600

Theta-plot these 3
values are drawn:
@ed, @e and
This Udine sounding,
launched at
11:00 UTC of
05/09/2013, has an
inversion layer
A (dT/dz < 0) at
0{ Ak 800 hPa and also a

o, |7 layer where

AT AT \<<9 ;e - N 1O, /dz < 0 (between
o A AU A LN L LA 900 and 850 hPa), but

-16-14-12-10-8 6 -4 2 0 2

a

\sjﬁur‘a‘t‘ed‘ad'rabét's =

300 305 310 315 520 525 330 335 340 345 850 355 360 365 370 375 380 385 390 395 400 WINDS PROFILE

Equivalent Potential Temperature (K) [\ |t |S not potentla/ly
\ .
ML ;/1stable (no LFC).
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Analysis of the termodynamic profile of the atmosphere

On Theta-plot is easy to identify constant ©,. layers

5-56p-2013,11:00:00 Theta plot (rds16044). The “third” line of
zp X the Thetaplot shows

©., that is one of the
most conserved
variables in
atmosphere, since it is
conserved even in
“dry layers”, like that
between 1000 and
925hPa (g=10g/kg!).
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Analysis of the termodynamic profile of the atmosphere

On Theta-plot is easy to identify constant ©,. layers

5-s6p-2013,11:00:00 Theta plot (rds16044), The “third” line of

zp \ the Thetaplot shows
©., that is one of the
most conserved
variables in
atmosphere, since it is
conserved even in
“dry layers”, like that
between 1000 and
925hPa (g=10g/kg!).

The small

7T 5%% ’ ” superadiabatic layer
/ RN near surface can lead
roon LN A ey - to overestimation of
509 305 910 o1 320 525 390 555 o0 2 oo s oty o6k a70 TS 3k w A WINDS PRGLE

Equivalent Potential Temperature (K) [N |nstab|||ty, |f Surface is
M taken as initial parcel.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Vertical time-series of ©, observed by RDS every 6h

7-aug-2002,12:00:00 Contour plot of rds16044. XY Wind:tc-sndwinds. Contour plot of rds16044. XY @e (fl”ed)
Graph:th-grid. XY Graph:pads.0. XV Graph:pads.1. XY Graph:pads. XY Graph:pads.4. .

= gradients
track very
well the air
mass
changes, e.g.
fronts.
Note CAPE,
CIN and LFC
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ONIIER

Analysis of the termodynamic profile of the atmosphere

Vertical time-series of ©, observed by RDS every 6h

7-aug-2002,12:00:00 Contour plot of rds16044. XYWind:tc-sndwinds. Contour plot of rds16044. XY @e (fIHEd)

(.'-I_rqph:th-grid. XY Graph:pads.0. XY Graph:pads.1. XY Graph:pads. XY Graph:pads.4.
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ONIIER Analysis of the termodynamic profile of the atmosphere

RDS vertical time series every 12 h for widespread hailfall

6ul-2007,00:00:00  Udine (16044) radiosounding time series every 12 h: ThetaE, Temp, Winds, CAPE, CIN and LFC
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ONIIER Analysis of the termodynamic profile of the atmosphere

RDS vertical time series every 12 h for Widespread hailfall

strong ©,
gradient in the
afternoon of
04/07/07 and
the wind jet
above 7 km
associated
with the cold
front.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Equivalent Potential Temperatures on a Theta-plot
28—-jun—1998,12:00:00 Theta plot (rds16044).

-26-26-24-22-20-18-16-14-12-10 -8 -6 -4 -2 0 2 4
T VA TV Ak

Operatively, the Theta-plot
diagram is computed
observing at different levels
p, T and T4, then deriving
q(p, T, Tq) and gsar(p, T)
and lastly computing and
drawing at each level
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ONIIER Analysis of the termodynamic profile of the atmosphere

Equivalent Potential Temperatures on a Theta-plot
28—-jun—1998,12:00:00 Theta plot (rds16044).
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Operatively, the Theta-plot
diagram is computed
observing at different levels
p, T and T4, then deriving
q(p, T, Tq) and gsar(p, T)
and lastly computing and
drawing at each level
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ONIIER Analysis of the termodynamic profile of the atmosphere

Temperatures on a Theta-plot

28—-jun—1998,12:00:00 Theta plot (rds16044).

s 6 4 a0 o o < The vertical profiles of ©.4,
TSIV NANANN N v O, and O intersect on
the isotherms T4, Ty, and
T respectively, because of
the correspondences seen
before. Example shows
temperatures at 850 hPa.
(Oes — Ocy) resembles the
dew-point depressure

(T — T4): the more distant
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ONIIER Analysis of the termodynamic profile of the atmosphere

Temperatures on a Theta-plot

28—-jun—1998,12:00:00 Theta plot (rds16044).

500

s 6 4 a0 o o < The vertical profiles of ©.4,
ANV LAV A ©. and O intersect on
the isotherms T4, Ty, and
T respectively, because of
the correspondences seen
before. Example shows
temperatures at 850 hPa.
(Oes — Ocy) resembles the
dew-point depressure

(T — T4): the more distant
are these two lines, the
more dry is that level.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Mixing ratios on a Theta-plot

28—-jun—1998,12:00:00 Theta plot (rds16044).
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ONIIER Analysis of the termodynamic profile of the atmosphere

Mixing ratios on a Theta-plot
28—-jun—1998,12:00:00 Theta plot (rds16044).

-28-26-24-22-20-18-16-14-12-10 -8 -6 -4 -2 0 2 4
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The vertical profiles of ©4
and O, intersect on the
iso-mixing ratio lines

(g = const) q and Qsat,
respectively.

The sounding shown is the
Udine RDS launched at
11:00 UTC of 28/06/1998.
Note that soundings are
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950

0 ‘000300 éDS 310 315 32;/ 325 '330 335 31‘10 /345 350 355 3;0 365 370 375(350 WINDS PR;F@E the ascen5|on to tropopa use
Equivalent Potential Temperature (K) A Lsoms ta kes a bout 45 minuteS

N tomis

~—=5MIS

by Agostino Manzato 33



ONIIER Analysis of the termodynamic profile of the atmosphere

A potentially unstable sounding shown on a Theta-plot

28—jun—1998,12:00:00 Theta plot (rds16044).
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If the mean air in the
lowest levels (avoiding the
surface superadiabatic thin
layer) is lifted along a dry
adiabat until LCL and then
along a vertical saturated
pseudo-adiabat, a LFC can
be found, hence CAPE> 0.
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ONIIER Analysis of the termodynamic profile of the atmosphere

A potentially unstable sounding shown on a Theta-plot

28—jun—1998,12:00:00 Theta plot (rds16044).
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If the mean air in the
lowest levels (avoiding the
surface superadiabatic thin
layer) is lifted along a dry
adiabat until LCL and then
along a vertical saturated
pseudo-adiabat, a LFC can
be found, hence CAPE> 0.
Since O, is conserved
along the whole process,
the LFC exists if and only
if ©¢ of the initial parcel is
larger then the lowest O
in the mid-levels, i.e.
MaxBuo> 0.
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ONIIER Analysis of the termodynamic profile of the atmosphere

The Lifted Parcel Theory on a Theta-plot

27-aug-2014,12:00:00 Theta plot (rds16044).

Since ©, is conserved along
the whole process, the Lifted
Parcel Theory on a
Thetaplot means simply to
draw a vertical line starting
from the initial parcel O,
that fixes everything else.
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ONIIER Analysis of the termodynamic profile of the atmosphere

The Lifted Parcel Theory on a Theta-plot

27-aug-2014,12:00:00 Theta plot (rds16044). Since ©, is conserved along
the whole process, the Lifted
Parcel Theory on a
Thetaplot means simply to
draw a vertical line starting
from the initial parcel O,
that fixes everything else.

In this case there is a first
LFC*, followed by a capping
layer, CAP. In this case, it is
an inversion, but in general
it is sufficient to have a layer
where d®s/dz > 0 and not
also dT7/dz > 0, because an
increase of O with z can

already stop the rising parcel.
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ONIIER Analysis of the termodynamic profile of the atmosphere

The Lifted Parcel Theory on a Theta-plot

Choosing another initial
parcel means simply to start
from a different ©, and to
draw another vertical line. It
is immediate to see how LFC
and EL change and how
much are reduced the CAPE
energy and the MaxBuo.

27-aug-2014,12:00:00 Theta plot (rds16044).
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ONIIER Analysis of the termodynamic profile of the atmosphere

The Lifted Parcel Theory on a Theta-plot

Choosing another initial
parcel means simply to start
from a different ©, and to
draw another vertical line. It
is immediate to see how LFC
and EL change and how
much are reduced the CAPE
energy and the MaxBuo.

On the Thetaplot the Most
Unstable Parcel (MUP) is
simply identified as the level
(or thin fayer) having the
maximum O, in the low
levels. The choice of the
initial parcel determines
Eqivalent Potential Temperature (K) everything in the adiabatic

27-aug-2014,12:00:00 Theta plot (rds16044).
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ONIIER Analysis of the termodynamic profile of the atmosphere

A potentially stable sounding having d©./dz < 0

25-aug-2014,12:00:00 Theta plot (rds16044).

If ©¢ is always lower than
©es then it is not possible to
find a LFC, hence CAPE =0
and MaxBuo< 0. It is better
to have a variable defined
even for stable soundings
(like MaxBuo or LI) than a
bounded variable like CAPE.
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ONIIER Analysis of the termodynamic profile of the atmosphere

A potentially stable sounding having d©./dz < 0

25-aug-2014,12:00:00 Theta plot (rds16044).

If ©¢ is always lower than
©es above, then it is not
possible to find a LFC, hence
CAPE = 0 and MaxBuo< 0.
It is better to have a variable
defined even for stable
soundings (like MaxBuo or
L) than a bounded variable
like CAPE.

Note that the fact that in
this example there are two
layers with d®,/dz < 0 have
no influences on the
potential instability.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Importance of low-levels ©, and of initial parcel choice

@ The fact that the identification of the initial parcel fixes its ©. value
means that all the rest of the pseudo-adiabatic lifting is determined
by that single value.
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Importance of low-levels ©, and of initial parcel choice

@ The fact that the identification of the initial parcel fixes its ©. value
means that all the rest of the pseudo-adiabatic lifting is determined
by that single value.

o After that the —conserved— ©, value of the initial parcel is chosen, all
its buoyancy and derived indices (LFC, EL, CAPE, CIN, MaxBuo,
LI,...) will depend only by the ©s profile above it, hence by the
environmental temperature alone, not by its humidity profile.
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Importance of low-levels ©, and of initial parcel choice

@ The fact that the identification of the initial parcel fixes its ©. value
means that all the rest of the pseudo-adiabatic lifting is determined
by that single value.

o After that the —conserved— ©, value of the initial parcel is chosen, all
its buoyancy and derived indices (LFC, EL, CAPE, CIN, MaxBuo,
LI,...) will depend only by the ©s profile above it, hence by the
environmental temperature alone, not by its humidity profile.

@ The environmental humidity is particularly important in the lowest
levels, where the initial parcel is chosen, because the initial ©, value
strongly depends on it, but it is not important (from the point of view
of the parcel buoyancy) above the level where the initial parcel is
taken.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Importance of low-levels ©, and of initial parcel choice

@ The fact that the identification of the initial parcel fixes its ©. value
means that all the rest of the pseudo-adiabatic lifting is determined
by that single value.

o After that the —conserved— ©, value of the initial parcel is chosen, all
its buoyancy and derived indices (LFC, EL, CAPE, CIN, MaxBuo,
LI,...) will depend only by the ©s profile above it, hence by the
environmental temperature alone, not by its humidity profile.

@ The environmental humidity is particularly important in the lowest
levels, where the initial parcel is chosen, because the initial ©, value
strongly depends on it, but it is not important (from the point of view
of the parcel buoyancy) above the level where the initial parcel is
taken.

@ All that is true when buoyancy is computed using the normal
temperature. If the virtual correction is used, then there is a —very
small- influence of the environmental humidity profile even above the

initial parcel level.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Skew-T vs. Theta-plot

© The skew-T is widely used, so there are many software to compute it.
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Skew-T vs. Theta-plot

© The skew-T is widely used, so there are many software to compute it.
@ The area in the skew-T are proportional to the real energy, so the
CAPE/CIN “areas” are perfectly proportional to their values. That is

not true on the Theta-plot, but presently these values are computed
via software's.
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Skew-T vs. Theta-plot

© The skew-T is widely used, so there are many software to compute it.

@ The area in the skew-T are proportional to the real energy, so the
CAPE/CIN “areas” are perfectly proportional to their values. That is
not true on the Theta-plot, but presently these values are computed
via software's.

© The Theta-plot show also ©,, that is probably the single most useful
variable in meteorology, because it is conserved under many processes.

@ On the Theta-plot it is very easy to identify if an initial parcel has a
LFC (unstable sounding) or not, just lifting it along a vertical line.

© For this reason on the Theta-plot it is obvious to identify the Most
Unstable Parcel, i.e. that having the maximum ©, in the low levels.
Instead, on the skew-T one have to apply the curved adiabat
processes to many initial parcels and find the one that produces the
maximum CAPE.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Skew-T vs. Theta-plot

© The skew-T is widely used, so there are many software to compute it.

@ The area in the skew-T are proportional to the real energy, so the
CAPE/CIN “areas” are perfectly proportional to their values. That is
not true on the Theta-plot, but presently these values are computed
via software's.

© The Theta-plot show also ©,, that is probably the single most useful
variable in meteorology, because it is conserved under many processes.

@ On the Theta-plot it is very easy to identify if an initial parcel has a
LFC (unstable sounding) or not, just lifting it along a vertical line.

© For this reason on the Theta-plot it is obvious to identify the Most
Unstable Parcel, i.e. that having the maximum ©, in the low levels.
Instead, on the skew-T one have to apply the curved adiabat
processes to many initial parcels and find the one that produces the
maximum CAPE.

@ The Theta-plot show also T,, and not only T and Ty.

Make your choice! _
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Analysis of the termodynamic profile of the atmosphere

Section 4

Some sounding-derived indices and their
properties
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ONIIER Analysis of the termodynamic profile of the atmosphere

Data-mining: the human effort to simplify Nature

@ A radiosounding is a very complex set of data describing the detailed
thermodynamical and horizontal-wind structure of the atmospheric
profile. For example, the Vaisala RS-92 sonde provides one observed
level every one second. The nominal ascension velocity is about
4.4m/s, so the troposphere is sampled in about 45 minutes (more
than 2500 measured levels!), during which the horizontal winds can
shift the sounding location of about 10-50 km.
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thermodynamical and horizontal-wind structure of the atmospheric
profile. For example, the Vaisala RS-92 sonde provides one observed
level every one second. The nominal ascension velocity is about
4.4m/s, so the troposphere is sampled in about 45 minutes (more
than 2500 measured levels!), during which the horizontal winds can
shift the sounding location of about 10-50 km.

@ All this information is condensed into the WMO TEMP format, that
provides only mandatory levels (TTAA) and significant levels (TTBB)
reducing the vertical resolution in troposphere to only ~ 50 levels.
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thermodynamical and horizontal-wind structure of the atmospheric
profile. For example, the Vaisala RS-92 sonde provides one observed
level every one second. The nominal ascension velocity is about
4.4m/s, so the troposphere is sampled in about 45 minutes (more
than 2500 measured levels!), during which the horizontal winds can
shift the sounding location of about 10-50 km.

@ All this information is condensed into the WMO TEMP format, that
provides only mandatory levels (TTAA) and significant levels (TTBB)
reducing the vertical resolution in troposphere to only ~ 50 levels.

@ Since the information is still “too large”, people have invented many
“indices” to reduce even more this “redundancy”. Each of this indices
try to investigate a particular characteristic of the sounding.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Data-mining: the human effort to simplify Nature

@ A radiosounding is a very complex set of data describing the detailed
thermodynamical and horizontal-wind structure of the atmospheric
profile. For example, the Vaisala RS-92 sonde provides one observed
level every one second. The nominal ascension velocity is about
4.4m/s, so the troposphere is sampled in about 45 minutes (more
than 2500 measured levels!), during which the horizontal winds can
shift the sounding location of about 10-50 km.

@ All this information is condensed into the WMO TEMP format, that
provides only mandatory levels (TTAA) and significant levels (TTBB)
reducing the vertical resolution in troposphere to only ~ 50 levels.

@ Since the information is still “too large”, people have invented many
“indices” to reduce even more this “redundancy”. Each of this indices
try to investigate a particular characteristic of the sounding.

@ Manzato and Morgan (2003) and Manzato (2003) have presented the
SOUND_ANALYS.PY software to compute ~ 50 indices from a

high-vertical resolution sounding. b Avosting Manrato 43
y Agostino Manzato



1erR Analysis of the termodynamic profile of the atmosphere

Comparing the raw data with the GTS-TEMP format 1/3
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Comparing the raw data with the GTS-TEMP format 2/3
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Thetaplot diagram from a RAW sounding (left) or TEMP format (right).
The main features are preserved but many high resolution details, in
particular in the low—levels, are smoothed away and that change the value

of sounding—derived indices.
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Comparing the raw data with the GTS-TEMP format 3/3

486 WEATHER AND FORECASTING VoLume 23

M anza tO (2008) h ave TABLE 2. As in Table 1 but comparing observed soundings in raw and TEMP formats at 1200 UTC. Examples with K* = 0.5 are

highlighted in boldface.
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amon g 3 Thetae (K) 099 099 -1 16 546
. . 4 MRH (%) 09 099 06 18 540
Sou nd 1 ng—denved 5 LRH(%) 0.98 0.98 0.4 26 546
6 MLWy (ms™') 0.97 1.09 ~0.08 1.0 546
- - 7 MLWu (ms ') 096 104 02 10 546
indices computed 5 Mieke) 0% 106 —02 08 546
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10 PWC (mm) 096 108 -13 36 546
from RAW and TEM P 1 CAPE (J kg™') 095 L13 -34 105 550
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formats (and also W o5 o e P
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06 and 10 but for 28 LI(°C) 0.86 0.82 05 01 17 546
! 29 LLWy (ms ') 084 109 ~005 0.11 099 442
. 30 Showl (“C) 081 083 08 02 17 546
the Shear n the 31 MEL (m) 0.80 087 7 ~380 585 546
32 Hel (kg ™") 080 106 23 -34 302 546
H 33 LCL (m) 077 1.03 =31 -28 549 546
IOWeSt 3 km, Wthh 34 BRI 074 L1 004 14 242 501
35 CAP (°C) 074 065 12 1 33 510
36 EHI 071 091 002 -0.02 0.09 549
had a very low 5 ano o om o %
) 38 h_MUP (m) 0.65 106 -164 95 564 546
39 LEC (m) 059 070 43 815 1030 : 255

Correlatlon - 40 Shear3 (s™') 0.15 0.48 0.008 ~=0.005 0.006 1.42

¥ . 546
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Different type of sounding-derived indices

From a sounding it is possible to derive three types of information:
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Different type of sounding-derived indices

From a sounding it is possible to derive three types of information:

@ Environmental indices (that do not need to apply the Lifted Parcel
Theory). Very commonly used are: K-index, Precipitable Water
(PWE), mean relative humidity of a layer, mean wind of a layer,

Shear, Helicity. . .

by Agostino Manzato 47



ONIIER Analysis of the termodynamic profile of the atmosphere =

Different type of sounding-derived indices

From a sounding it is possible to derive three types of information:

@ Environmental indices (that do not need to apply the Lifted Parcel
Theory). Very commonly used are: K-index, Precipitable Water
(PWE), mean relative humidity of a layer, mean wind of a layer,
Shear, Helicity. . .

@ Indices that are computed based on the Lifted Parcel Theory and
hence strongly depends on the choice of the initial parcel (initial ©¢)
and on the details observed in the low-levels. Very commonly used
instability indices are: LCL height or temperature, Showalter or Lifted
Index, CAPE, CIN, updraft velocity, MaxBuo. ..
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Different type of sounding-derived indices

From a sounding it is possible to derive three types of information:

@ Environmental indices (that do not need to apply the Lifted Parcel
Theory). Very commonly used are: K-index, Precipitable Water
(PWE), mean relative humidity of a layer, mean wind of a layer,
Shear, Helicity. . .

@ Indices that are computed based on the Lifted Parcel Theory and
hence strongly depends on the choice of the initial parcel (initial ©¢)
and on the details observed in the low-levels. Very commonly used
instability indices are: LCL height or temperature, Showalter or Lifted
Index, CAPE, CIN, updraft velocity, MaxBuo. ..

© Mixed indices, which typically uses instability indices together with
wind information. Very commonly used are: Energy-Helicity Index
(EHI), SWEAT, SWISS. ..

We will see only a few of them!
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K—-Index and its 1995-2002 distribution above Udine

PSS One of the oldest indices
is the K—Index (George,
1960). The dot line is the
sub-sample for soundings
associated with
convective activity in the
FVG plain in the 6 hours
after launch (1995-2002).
Values above 25 are often
: associated with lightning
o » = occurrences.

Numb. of cases
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K—-Index and its 1995-2002 distribution above Udine

PSS One of the oldest indices
is the K—Index (George,
1960). The dot line is the
sub-sample for soundings
associated with
convective activity in the
FVG plain in the 6 hours
after launch (1995-2002).
Values above 25 are often
: associated with lightning
o » = occurrences.

Numb. of cases

KI = Tesgs0 — Tesoo + Taesso — (Teroo — Ta@700)- (17)
Kl is defined using only environmental temperature and dew-point
depressure on three mandatory levels. Even if very simple, it is also

correlated to rainfall intensity.
by Agostino Manzato 48
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“Two-levels” potential instability family

o Showalter (1953) was the first to use the difference of temperature
between the lifted parcel and the environmental air at 500 hPa:

Showl = Tees00 — Tpes00 (K] (18)

Showalter used as initial parcel the mean air at 850 hPa.
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Showalter used as initial parcel the mean air at 850 hPa.

o Galway (1956) defined the Lifted Index (LI) in the same way, but
using as initial parcel the mean air of the lowest 500 m.

@ Nowadays the most used “lifted index” is the one using as initial
parcel the Most Unstable Parcel (max ©.), called DT500 in Manzato
(2003) or MULI by many authors.
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“Two-levels” potential instability family

o Showalter (1953) was the first to use the difference of temperature
between the lifted parcel and the environmental air at 500 hPa:

Showl = Tees00 — Tpes00 (K] (18)

Showalter used as initial parcel the mean air at 850 hPa.

o Galway (1956) defined the Lifted Index (LI) in the same way, but
using as initial parcel the mean air of the lowest 500 m.

@ Nowadays the most used “lifted index” is the one using as initial
parcel the Most Unstable Parcel (max ©.), called DT500 in Manzato
(2003) or MULI by many authors.

e Manzato (2003) introduced also the temperature difference between
environment and lifted parcel evaluated at a fixed parcel temperature
(chosen at —15°C) instead than to a fixed pressure level (500 hPa). It
was called Difference of Temperature at the Core Level (DTC).
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1995-2002 distribution of the Udine MULI (called DT500)

Frequency distribution for DT500 ( 5775 cases, 1526 active cases )

The dot distribution is
the sub-sample for
soundings associated with
convective activity in the
FVG plain in the 6 hours
after launch (1995-2002).
Low (< +2°C) or
negative values are

, associated with lightning
L : ; ‘ occurrences.

Numb. of cases

DT500(C)
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1995-2002 distribution of the Udine MULI (called DT500)

Frequency distribution for DT500 ( 5775 cases, 1526 active cases )

The dot distribution is
the sub-sample for
soundings associated with
convective activity in the
FVG plain in the 6 hours
after launch (1995-2002).
Low (< +2°C) or
negative values are

, associated with lightning
L : ; ‘ occurrences.

-5 0 H 10 15

Numb. of cases

DT500(C)

At least in Europe, there are a number of evidences where the Most
Unstable Lifted Index gives better statistical performances when

forecasting convection (lightnings or hail or storm occurrences) than

CAPE, which is a bounded variable. References includes Manzato (2003),
Groenemeijer & van Delden (2007), Kunz (2007), Ukkonen et a), (2077).rrat0 50



ONIIER Analysis of the termodynamic profile of the atmosphere

1995-2002 distribution of the Udine CAPE and CIN

500

w e

20

APE (5800 cases,

Differently from the “two-level”
instability indices (which includes
also MaxBuo), CAPE and CIN
are integrated measures of
buoyancy (positive for CAPE and
negative for CIN). Note that
SOUND_ANALYS.PY computes
the maximum UpDr velocity
using CAPE integrated only up to
the parcel level of —15°C, instead
than up to EL.
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1995-2002 distribution of the Udine CAPE and CIN

APE (5800 cases,

Differently from the “two-level”
instability indices (which includes
also MaxBuo), CAPE and CIN
are integrated measures of
buoyancy (positive for CAPE and
negative for CIN). Note that
SOUND_ANALYS.PY computes
the maximum UpDr velocity
using CAPE integrated only up to
the parcel level of —15°C, instead
than up to EL. CAPE distribution
is not much discriminating the
convective cases. . .

Convective events in the FVG
plain can have also

CIN< —100 J/kg.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Numb. of cases

Maximum Buoyancy and Downdraft Potential

600
L

500

400
L

300
L

200

100

Frequency distribution for MaxBuo ( 5775 cases, 1526 active cases )

Storms are more likely when
MaxBuo> —2K. Morgan
and Tuttle (1984) defined
MaxBuo but also other
indices, like the difference
between the maximum ©
in the low levels and the
minimum O in the mid
levels, called Downdraft
Potential. DownPot=

- o ’ ° o Max(@es‘low) - Min(@e‘mid)-
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Maximum Buoyancy and Downdraft Potential

Frequency distition o Maso (5775 cases, 1526 ackvecases Storms are more likely when
MaxBuo> —2K. Morgan
and Tuttle (1984) defined
MaxBuo but also other
indices, like the difference
between the maximum ©
in the low levels and the
minimum O in the mid
levels, called Downdraft

: D Potential. DownPot=
o o ) o o Max(@es\,ow) — Min(@e\m,-d).

MaxBuo [K]

Physical meaning: the coolest and more dry air in the middle troposphere [Min(©e|mid)]

is supposed to saturate by rainfall evaporation and hence is brought down along a

600
L

saturated pseudo-adiabat (©. is conserved). The maximum thermal contrast
(generating the outflow wind) will happen at the low level where ©.s is maxima. It tries

to estimate the downdraft negative buoyancy. oA " "
y Agostino Manzato 5
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Wind hodograph and shear

(/]
10 5 u [mV/SI
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Wind hodograph and shear

(/]
10 5 u [mV/SI
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S 273
3 1323
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The hodograph is the plot of the two horizontal wind components v and v.
Low level veering favors uplift. The hodograph path length is called Shear.

-
fzo ~dz ~ Ziv \/(u,, —Up—1)?+ (Vp — vp_1)? (19)
ZN — 20 ZN — 2o

ow
0z

Shear =
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ONIIER Analysis of the termodynamic profile of the atmosphere

Bulk shear

@ Shear is usually computed from surface up to 6 or from surface up to
troposphere (about 12 km).
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Bulk shear

@ Shear is usually computed from surface up to 6 or from surface up to
troposphere (about 12 km).

@ Very often the shear is confused with the Bulk Shear, that is simply
the magnitude of the vectorial difference between two winds at two
different levels: BS= \/(u2 — u1)2 + (v2 — n1)2.
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Bulk shear

@ Shear is usually computed from surface up to 6 or from surface up to
troposphere (about 12 km).

@ Very often the shear is confused with the Bulk Shear, that is simply
the magnitude of the vectorial difference between two winds at two
different levels: BS= \/(u2 — u1)2 + (v2 — n1)2.

@ The most used levels for the BS are: sfc vs. 1km, sfc vs. 850 hPa,
sfc. vs. 3km, sfc. vs. 5km, 1km vs. 3km, 1km vs. 6 km. ..
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Bulk shear

@ Shear is usually computed from surface up to 6 or from surface up to
troposphere (about 12 km).

@ Very often the shear is confused with the Bulk Shear, that is simply
the magnitude of the vectorial difference between two winds at two
different levels: BS= \/(u2 — u1)2 + (v2 — n1)2.

@ The most used levels for the BS are: sfc vs. 1km, sfc vs. 850 hPa,
sfc. vs. 3km, sfc. vs. 5km, 1km vs. 3km, 1km vs. 6 km. ..

@ For example, the Bulk Richardson Number is defined as 2 times
CAPE divided by the square of the bulk shear between 6 km and
500m: BRN= 2200

>
BSgri
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Bulk shear

@ Shear is usually computed from surface up to 6 or from surface up to
troposphere (about 12 km).

@ Very often the shear is confused with the Bulk Shear, that is simply
the magnitude of the vectorial difference between two winds at two
different levels: BS= \/(u2 — u1)2 + (v2 — n1)2.

@ The most used levels for the BS are: sfc vs. 1km, sfc vs. 850 hPa,
sfc. vs. 3km, sfc. vs. 5km, 1km vs. 3km, 1km vs. 6 km. ..

@ For example, the Bulk Richardson Number is defined as 2 times
CAPE divided by the square of the bulk shear between 6 km and
500m: BRN= 2 C20%,

BRI

@ In very complex orography terrains, like northern Italy, it is not
obvious that shear will have the same importance in governing storm
organization (single cell, multicell, squall lines) as it has been found in
the US's plains, because of representativeness of RDS-derived shear
compared with the real interaction between winds and complex
orography. ..
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Storm—Relative Helicity

<
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Storm—Relative Helicity

0 5 u [/

1323
|5 1707

o4
645 iiiis
REaY:

2124

The Storm-Relative Helicity (Davies-Jones 1990) is the area between the

storm-velocity vector, Vs, and the hodograph. Usually integrated up to
3 km.

2y L ow N
SRH = */ k- (W — V) x 5 cdz = — Z(Un — us)(vn — Va—1) — (Un — Up—1)(vn — vs) (20)
20 1

oz

Should be useful for supercells and tornadogenesis. _
by Agostino Manzato 55
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Water Vapor Flux in the lowest 3 km

Frequencydistbutonfor Vs 570 case, 1474 civecases) In FVG (Adriatic Sea on the
South and Alps on the
North) we have found to be
very useful the water vapor
flux in the lowest 3 km:

1 X
VFlux = = > pyn- v
20

N
(21)
: where v is the meridional
wind component.

VFlux [kg/(sm2)]
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Numb. of cases

Water Vapor Flux in the lowest 3 km

Frequencydistbutonfor Vs 570 case, 1474 civecases) In FVG (Adriatic Sea on the
South and Alps on the
North) we have found to be
very useful the water vapor
flux in the lowest 3 km:

1 X
VFlux = —-van " Vn
2

N
(21)
: where v is the meridional
015 010 005 000 005 Wlnd component.

VFlux [kg/(sm2)]

Physical meaning: strong moist winds blowing from South (VFlux< 0)
brings the “convective fuel” against the orographic barrier, producing
convection triggered by orographic lifting or strong precipitating systems
(especially in autumn). Useful in particular for heavy rainfall forecast.

800
L

600

400

200
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Example of SOUND_ANALYS.PY output in a HTML page

THed Index 5008 [25713.0C1
i}

201

SOUND_ANALYSIS RESULTS: . SBES 5394 CT

F Temp a5 [3370C]

DTC
JSEowalter s (10117 €]
Showl

T P
Cin Souding (YAID cde
managd e el

Sam ex Swiz) (431597
WIss

Just an example of
the many indices
computed by
SOUND_ANALYS.PY
(freely available upon
request) for the Udine
1998/06/28 12UTC
sounding.

The three methods
“T", "“T,” and T,
are explained in
Manzato and Morgan
(2003).
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‘Sounding Analysis results
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Matrix of inter-correlations among sounding-derived indices

M anzato JAM C (2012) |Correlation Matrix| of all the predictors (1992-2009)

has studied the g8 10
correlations among 52 Z%féég

indices derived from DU?,EZ;% N
1992-2009 00, 06, 12 |
and 18 UTC Udine "

soundings. ¥ 0
RDS-derived indices e

can be seen as a M»L%g:

non-linear reduction of M%@: 0s
3D observed REF’%‘.’%

atmosphere variables :Vigﬁ

(p, T, RH, ©¢, wind at iT:éié [
many levels) into a set Rl

of highly intercorrelated s L1 oo
parameters. fé5%‘5%%2?‘%%%;?@%@%%%@@%% ;;%%ﬁ% N



ONIIER Analysis of the termodynamic profile of the atmosphere

Results: 3 groups of indices inter-correlated (R> 0.80)

© Indices related to the most unstable parcel, like its equivalent
potential temperature (©.), its mixing ratio (Mix) and the height
where its ascent temperature becomes 0°C (MEL), or related to other
environmental characteristics, like the height where the atmospheric
wet bulb temperature becomes 0°C (WBZ) and the precipitable
water integrated along the entire atmospheric column (PWE).
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Results: 3 groups of indices inter-correlated (R> 0.80)

© Indices related to the most unstable parcel, like its equivalent
potential temperature (©.), its mixing ratio (Mix) and the height
where its ascent temperature becomes 0°C (MEL), or related to other
environmental characteristics, like the height where the atmospheric
wet bulb temperature becomes 0°C (WBZ) and the precipitable
water integrated along the entire atmospheric column (PWE).

@ Indices of “two—levels” potential instability such as Lifted Index
(Galway 1956), Showalter Index (Showalter 1953), DT500 and DTC
(Manzato 2003), i.e. the “lifted index family”. Also the Maximum
Buoyancy (Morgan and Tuttle 1984, Manzato and Morgan 2003,) is
very well related to three of these indices.
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Results: 3 groups of indices inter-correlated (R> 0.80)

© Indices related to the most unstable parcel, like its equivalent
potential temperature (©.), its mixing ratio (Mix) and the height
where its ascent temperature becomes 0°C (MEL), or related to other
environmental characteristics, like the height where the atmospheric
wet bulb temperature becomes 0°C (WBZ) and the precipitable
water integrated along the entire atmospheric column (PWE).

@ Indices of “two—levels” potential instability such as Lifted Index
(Galway 1956), Showalter Index (Showalter 1953), DT500 and DTC
(Manzato 2003), i.e. the “lifted index family”. Also the Maximum
Buoyancy (Morgan and Tuttle 1984, Manzato and Morgan 2003,) is
very well related to three of these indices.

© Indices of “integrated” potential instability, i.e. maximum updraft
velocity (UpDr), hail diameter (HD), CAPE and precipitable water
integrated between LFC and the equilibrium level (PWC). MaxBuo is
also well correlated with three of these indices.
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ONIIER Analysis of the termodynamic profile of the atmosphere

High spatio-temporal variability of sounding-derived indices

E)
EC R
g4

Sas
£
\ 330
e
326 |

Miglietta et al. (2016) have shown
how fast some instability indices can
vary, using WRF simulations on the
HyMeX case of 12 September 2012.
Shown are the time-series of
WRF-derived LI, MUP ©. and
meridional component of Low-Level
Wind (LLWv) above Udine (inland,
on the right) and offshore (70 km
southerly, on the left) every 5', but
smoothed with 10’-moving average,
for 6 different initial conditions.
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High spatio-temporal variability of sounding-derived indices
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Miglietta et al. (2016) have shown
how fast some instability indices can
vary, using WRF simulations on the
HyMeX case of 12 September 2012.
Shown are the time-series of
WRF-derived LI, MUP ©, and
meridional component of Low-Level
Wind (LLWv) above Udine (inland,
on the right) and offshore (70 km
southerly, on the left) every 5', but
smoothed with 10’-moving average,
for 6 different initial conditions.
Note that the indices derived from
real RDS (black crosses “+") every
6 h can be quite far from simulations,
e.g. O inland.
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Analysis of the termodynamic profile of the atmosphere

Obs. & WREF sim. convergence line for 12/09/12 supercell

A Manzato et al | Atmospheric Research 153 (2014) 98-118.

Miglietta et al. (2016) simulated the
| convergence line feeding supercell that
was seen by MSG Super Rapid Scan
(Manzato et al. 2015).
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Analysis of the termodynamic profile of the atmosphere

High spatiotemporal change MULI map (court. A. Pucillo)

ECMWF 00Z10Aug2017 :

15Z10Auqg2017

12 123E 124E 126E 128E  13E  133E 134E I3 13BE 1

DS QOLAIES

Ex. of MULI spatial variability
derived by ECMWF pseudo-RDS:
from -1 to -7°C 100 km apart. o

z 9ac
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High spatiotemporal change MULI map (court. A. Pucillo)

ECMWF 00Z10Aug2017 : 15Z10Aug2017
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Ex. of MULI spatial variability
derived by ECMWF pseudo-RDS:
from -1 to -7°C 100 km apart.

ECMWF 12705Jun2017 : 09Z06Jun2017
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If the sounding is located near to a
minimum of potential instability then

the forecast can be unde£§a§
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ONIIER Analysis of the termodynamic profile of the atmosphere

Section 5

Forecasting with sounding-derived indices:
examples & problems

Output

Neurons
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Analysis of the termodynamic profile of the atmosphere

The simplest way to use indices is setting a threshold. . .
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Here you can see
a Thetaplot +
hodograph (note
veering) + index
table made by
Arturo Pucillo
(OSMER) in
GrADS.
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ONIIER Analysis of the termodynamic profile of the atmosphere

The simplest way to use indices is setting a threshold. . .
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ONIIER Analysis of the termodynamic profile of the atmosphere

.. but multivariate analysis is much better then univariate

@ Instead of using one or more indices dichotomized with a “magic”
threshold, it is much more useful to apply a multivariate analysis, in
the multispace of more indices (joint probability).
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. but multivariate analysis is much better then univariate

Instead of using one or more indices dichotomized with a “magic”
threshold, it is much more useful to apply a multivariate analysis, in
the multispace of more indices (joint probability).

@ The simplest way to do it is to apply a Linear Discriminant Analysis
(LDA), finding a condition like a1 X1 + a2 X2 + ... + anXn S const.
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... but multivariate analysis is much better then univariate

@ Instead of using one or more indices dichotomized with a “magic”
threshold, it is much more useful to apply a multivariate analysis, in
the multispace of more indices (joint probability).

@ The simplest way to do it is to apply a Linear Discriminant Analysis
(LDA), finding a condition like a1 X1 + ax X2 + ... + an Xy S const.

@ Since the instability indices (candidate predictors) are usually too
many and since they are often correlated among them, it is
mandatory to implement a input selection algorithm, like a stepwise
selection (forward or backward) or a brute-force exhaustive search of a
limited subset of inputs (as the LEAPS algorithm in linear regression
problems), in order to reduce noise in the statistical model.
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ONIIER Analysis of the termodynamic profile of the atmosphere

... but multivariate analysis is much better then univariate

@ Instead of using one or more indices dichotomized with a “magic”
threshold, it is much more useful to apply a multivariate analysis, in
the multispace of more indices (joint probability).

@ The simplest way to do it is to apply a Linear Discriminant Analysis
(LDA), finding a condition like a1 X1 + ax X2 + ... + an Xy S const.

@ Since the instability indices (candidate predictors) are usually too
many and since they are often correlated among them, it is
mandatory to implement a input selection algorithm, like a stepwise
selection (forward or backward) or a brute-force exhaustive search of a
limited subset of inputs (as the LEAPS algorithm in linear regression
problems), in order to reduce noise in the statistical model.

@ When a complex statistical method is applied, like one with many
predictors or non—linear models (neural networks), it is mandatory to
avoid the overfitting. A good way is to develop the model fitting a
trainig set and choosing the model that optimize the validation set.

Lastly, an independent test sample should be ‘used: _
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ONIIER Analysis of the termodynamic profile of the atmosphere

Pre-processing the input data

@ For any forecasting problem it should be clarified if it is a classification
problem (categorical forecast among a few classes, e.g. binary events)
or a regression problem (forecasting the value of a continuous
variable), because the statistical techniques used are different and
also the verification methods are different (e.g. Cross-Entropy Error,
ROC and indices of contingency table vs. MSE and Taylor diagram).
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@ When simple linear methods are used, a pre-processing of inputs is not
always needed, but when non-linear methods are applied (maybe using
a random initial choice of parameters) it is much better to pre-process
the candidate predictors to make their domains more similar.
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standard deviation.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Pre-processing the input data

@ For any forecasting problem it should be clarified if it is a classification
problem (categorical forecast among a few classes, e.g. binary events)
or a regression problem (forecasting the value of a continuous
variable), because the statistical techniques used are different and
also the verification methods are different (e.g. Cross-Entropy Error,
ROC and indices of contingency table vs. MSE and Taylor diagram).

@ When simple linear methods are used, a pre-processing of inputs is not
always needed, but when non-linear methods are applied (maybe using
a random initial choice of parameters) it is much better to pre-process
the candidate predictors to make their domains more similar.

@ For example, for regression problems, it is a commonly to standardize
each variable, subtracting the mean value and dividing for the
standard deviation.

@ For the classification problem, we suggest to transform each variable
in its empirical posterior probability of event occurrence, as explained
in Manzato (2005).
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ONIIER Analysis of the termodynamic profile of the atmosphere

From conditional distrib. to Event Posterior Probability

Conditional componentsf_clas(MRH) for rain>20mm

An example, from Manzato (2007c), of
transforming the Mean Relative Humidity in
the lowest 500 hPa (MRH) into its Empirical
Posterior Probability of having at least

20 mm of rain in the 6 hours after the
sounding release.

AN B

Posterior probabllity of rain>20 mm for MRH (19922005, 18555 cases)
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ONIIER Analysis of the termodynamic profile of the atmosphere

From conditional distrib. to Event Posterior Probability

Conditional components f_clas(MRH) for rain>20mm

“ & 0 100
AN B

Posterior probabllity of rain>20 mm for MRH (19922005, 18555 cases)

An example, from Manzato (2007c), of
transforming the Mean Relative Humidity in
the lowest 500 hPa (MRH) into its Empirical
Posterior Probability of having at least

20 mm of rain in the 6 hours after the
sounding release.

The histograms above (derived from the
active and non-active empirical distributions)
are proportional to the 4 entries of the
contingency table (a, b, ¢ and d divided by
the total number of cases ), while the
event posterior probability (Bayes theorem),
shown below, becomes an effective
pre-processing technique, when all variables
are converted into functions fitting their

empirical probabilities.
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ONIMIER Analysis of the termodynamic profile of the atmosphere

38-year hi-res climo of annual RAIN (lIsottaet al. 1JC2013)

CLIMATE OF DAILY PRECIPITATION IN THE ALPS
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Figure 6. Mean annual precipitation (mm per year) for the period ]971—200%y Agostino Manzato 68



QSIS Analysis of the termodynamic profile of the atmosphere

Annual climo Udine daily rain and FVG MaxRain every 6h

The annual cycle of 3—classes of daily
rain in Udine (FVG plain), derived from
55 years, shows that weak rain are more
likely in Spring, while rain> 20 mm
probability is maximum in Sep-Nov.
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ONIMIER Analysis of the termodynamic profile of the atmosphere

Annual climo Udine daily rain and FVG MaxRain every 6h

Maxain probabilty

Mean nd SO Maxtin (mm)
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The annual cycle of 3—classes of daily
rain in Udine (FVG plain), derived from
55 years, shows that weak rain are more
likely in Spring, while rain> 20 mm
probability is maximum in Sep-Nov.

The annual cycle of the Maximum Rain
in 6h in all the FVG region (derived by
10 years series of 104 raingauge stations)
has a peak at the beginning of
November, when strong flux
precipitation (see Davolio et al., QJ
2016) falls on the Prealps, eventually
with embedded convection. One can
identify 3 different regimes.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Climatological forecast with indices is relatively “easy”

346 A. Manzato / Atmospheric Research 83 (2007) 336-348

Annual cycle of DTS00 vs. VFlux 30day moving average (12 + 18 UTC years 1992-2004)

g The composite

X Fcbé annual cycle of
MULI and VFlux
2 e < { (from Manzato
g

2007b) has an

% By fu .- high correlation
g g | Ao AL._,,/M‘Q(NI,\// with the annual
7 cycle of FVG rain,
g | and also for the
; 1 mean-Adriatic
é" N I S SST from satellite
SR AT T . has a good R.

DT500 [C]

Fig. 7. The annual cycle of the 30-day moving average DT500 vs. the 30-day moving average VFlux. On the top-right corner are the months with low
North—South water vapour flux and high stability, while the left-bottom corner means soundings close to instability and with high VFIux. The labels
are written near the “middle of the month” points. The two gray lines used to divide in quarters correspond to the mean values of the DT500 and
VFlux, only the 12 and 18 UTC soundings have been used.
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Climatological forecast with indices is relatively “easy”

346 A. Manzato / Atmospheric Research 83 (2007) 336-348

Annual cycle of DTS00 vs. VFlux 30day moving average (12 + 18 UTC years 1992-2004)

g ] The composite

i annual cycle of
MULI and VFlux
2] iy (from Manzato
g

2007b) has an
high correlation
with the annual

 Convective
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; cycle of FVG rain,
g and also for the
. : mean-Adriatic
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DT500 [C]

Fig. 7. The annual cycle of the 30-day moving average DT500 vs. the 30-day moving average VFlux. On the top-right corner are the months with low
North—South water vapour flux and high stability, while the left-bottom corner means soundings close to instability and with high VFlux. The labels
are written near the “middle of the month” points. The two gray lines used to divide in quarters correspond to the mean values of the DT500 and
VFlux, only the 12 and 18 UTC soundings have been used.
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ONIMIER Analysis of the termodynamic profile of the atmosphere

18-year EUCLID CG-LIGHTNING climo in “NE" ltaly

DECEMBER 2014 FEUDALE AND MANZATO 2655

475N Feudale and
" Manzato
! © (JAMC 2014)
° found a
46.5N 8 .
L maximum
46N A in the
. Carnic and
455N + Julian
o s Prealps (on
2 the border
445N ' between
Italy and
“NGE T 95E  10E 105E TIE 115E 12E 1256 13E 135E 14E 145E SIovenia)

FIG. 2. Spatial distribution of lightning density defined as the average number of CG flashes h ' km 2 during the period 1995-2012 (18 yr)
on a 0.03° X 0.02° grid. The scale is multiplied by a factor of 10* for convenience.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Defining an objective Convective Activity variable

Manzato (2003) introduced an objective measure of 6-h storm “intensity”:

%-In (1+num,light)+%-ln (1+rain)+%~ln (1+wind)
CalCA6h = {0 29

if num_light > 3,

if num_light < 3.
(22)
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ONIIER Analysis of the termodynamic profile of the atmosphere

Defining an objective Convective Activity variable

Manzato (2003) introduced an objective measure of 6-h storm “intensity”:

§In (L-+num_light)+§-In (1+rain)+3-In (1+-wind) . :
8 5 3
CalCA6h = 2.9 if num_light > 3,

if num_light < 3.
(22)

340 A. Manzato / Atmospheric Research 83 (2007) 336-348

A Frequency distribution of CALCAG6h for the 1505 active cases of years 1995-2004

150
!

It is a weighted
sum of rain,
C2G lightnings
and gust.

The distribution
of thunderstorm
“intensity” is
bell shaped:

100
L

Numb. of cases

50
L

o 1033 10.79
T T . - . i
0.0 0.2 04 06 0.8 1.0
CALCA6h by Agostino Manzato 74




ONIIER Analysis of the termodynamic profile of the atmosphere

Trying to forecast thunderstorms in FVG plain with ANN

Manzato (2007) fitted the CalCA6h database with neural networks, using
a selection of Udine sounding—derived indices as predictors. The same
statistical model has been applied (via a linear fit) to ECMWF run12

pseudo—soundings.
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Trying to forecast thunderstorms in FVG plain with ANN

Manzato (2007) fitted the CalCA6h database with neural networks, using
a selection of Udine sounding—derived indices as predictors. The same
statistical model has been applied (via a linear fit) to ECMWF run12
pseudo—soundings.

Time Series of PseudoForCA6h and CalCAGh in the current period, run 12UTC.

When the forecast sonof 160015 1614 e

~ANNS,

O -o8s,

ANN (ForCAG6h) is
above = 0.5 we
expect strong
storms, but in this
case they are too
strong: OBS=
CalCA6h> 0.8!
Weather forecast
are more difficult
than climate for.!
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ONIIER Analysis of the termodynamic profile of the atmosphere

The case of 20170810: Thetaplot of 122UTC Udine RDS
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erR Analysis of the termodynamic profile of the atmosphere

All indices computed by SOUND_ANALYS.PY in 3 ways

o 1 cores i Nveses 19962007 a7 B2
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Analysis of the termodynamic profile of the atmosphere

All indices computed by SOUND_ANALYS.PY in 3 ways

index [5 - 95 percentls nit

ol e e Nowesnber 19962007] v Y 5w
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B | 13207 | 13561
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Sounding Analysis results

For differences in the 3 adiabatic
process methods see Manzato &
Morgan (2003).
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ONIIER Analysis of the termodynamic profile of the atmosphere ®

ECMWE-derived maps of MUP ©, and MULI at 12UTC

ECMWF 00Z10Aug2017 : 12710Aug2017 ECMWF 00Z10Aug2017 : 12Z10Aug2017

e ™ i

.

355 46

350 64

462

337 46N

330 4580

4560

4540

45

Thu 10-AUG-2017 127 Thetge
12 123E 124E 126E 128E  13E  133E 134E I3 13BE 1 12

45.; = 5
|[7hu_ro-aue—2017 12z pTsoa | .|
122E 1246 12BE  1ZBE 13E 13.2E  134E 138 138E 14E

DS QOLAIES GrDS: COLA/IGES

©. of the Most Unstable Parcel. Most Unstable Lifted Index.

by Agostino Manzato 78



ONIIER Analysis of the termodynamic profile of the atmosphere L

ECMWE-derived maps of MUP ©, and MULI at 15UTC
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ONIIER Analysis of the termodynamic profile of the atmosphere e

ECMWE-derived maps of MUP ©, and MULI at 18UTC

ECMWF 00Z10Aug2017 : 18Z10Aug2017
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The shape of initial parcel ©, and potential instability are very similar!
Max ©, is much lower than observed (356 K).
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ONIIER Analysis of the termodynamic profile of the atmosphere

ECMWE-derived maps of CAPE and CIN at 12UTC
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CAPE was largerly underestimated. CIN was largerly overestimated.
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Analysis of the termodynamic profile of the atmosphere

ECMWE-derived maps of CAPE and CIN at 15UTC
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CIN was largerly overestimated.
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QSIS Analysis of the termodynamic profile of the atmosphere

ECMWEF-derived maps of CAPE and CIN at 18UTC
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CAPE was largerly underestimated. CIN was largerly overestimated.

Only at 18UTC ECMWF saw some more unstable air above Adriatic sea,
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QSIS Analysis of the termodynamic profile of the atmosphere

ECMWE-derived maps of PWE and DownPot at 12UTC
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ONIIER Analysis of the termodynamic profile of the atmosphere

ECMWE-derived maps of PWE and DownPot at 15UTC
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QSIS Analysis of the termodynamic profile of the atmosphere

ECMWEF-derived maps of PWE and DownPot at 18UTC
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Only PWE and some wind fields like Downdraft Potentlal seems to get
closer to the area really hit by MCS.
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ONIIER Analysis of the termodynamic profile of the atmosphere

MSG 10.8 um BT plus CESI lightnings 1200-1600 UTC

10-aug-2017,12:15:00 Cro.big eleffption filled contour. Satel_IR_grb grib237led

contour. fulmini locatien.fulminij¢ location.Station plot (euro_levels).

The Mesoscale
Convective
System started
on the
Apennines and
developed
strongly along
the Adriatic
coast.

15

Alt: 500 mb

by Agostino Manzato 87



ONIIER Analysis of the termodynamic profile of the atmosphere

VMI radar, 5’ stations and CESI lightnings 1400-1520 UTC

10-aug-2017,14:05:00 Oro.small elevation filled contour. Oro friuli filled contour. Radar_grb grib228 filled

contour. fulmini location fulminiic location. (station5m).St:

Only in Friuli
Venezia Giulia region
it produced more
that 300 M€ of
damages (mostly by
wind).
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ONIIER Analysis of the termodynamic profile of the atmosphere

Section 6
Conclusions
“Pazzo & bene da catene, He is a raving madman
Chi fastidio mai si da who ever takes the trouble
Per saper quel che sara...” to know what the future holds. ..

from the first act of “Sant’Alessio” (1631) by Stefano Landi (1587-1639), text by Giulio

Rospigliosi (1600-1669, also known as Pope Clemente IX).

by Agostino Manzato 89



ONIIER Analysis of the termodynamic profile of the atmosphere

Conclusions

@ Think in terms of equivalent potential temperature, ©., that is quite
conserved and -if possible- look at the Thetaplot diagram.
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determine the full adiabatic process (initial parcel ©.) and in
particular on the importance of moisture in the low levels.
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ONIIER Analysis of the termodynamic profile of the atmosphere

Conclusions

@ Think in terms of equivalent potential temperature, ©,, that is quite
conserved and -if possible- look at the Thetaplot diagram.

@ Remember that potential instability is a characteristic of an
atmosphere profile with respect to large displacements, while static
(and conditional) instability is a characteristic of an atmosphere layer
with respect to relatively small displacements.

@ Reflect on the importance of the choice if the initial parcel, that
determine the full adiabatic process (initial parcel ©.) and in
particular on the importance of moisture in the low levels.

@ Consider the old Lifted Index before CAPE and check also MaxBuo.

@ Consider the high spatio-temporal variation of indices, particularly
those using low—levels. Try to foresee possible trigger mechanisms.
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Conclusions

Think in terms of equivalent potential temperature, O, that is quite
conserved and -if possible- look at the Thetaplot diagram.
Remember that potential instability is a characteristic of an
atmosphere profile with respect to large displacements, while static
(and conditional) instability is a characteristic of an atmosphere layer
with respect to relatively small displacements.

Reflect on the importance of the choice if the initial parcel, that
determine the full adiabatic process (initial parcel ©.) and in
particular on the importance of moisture in the low levels.

Consider the old Lifted Index before CAPE and check also MaxBuo.
Consider the high spatio-temporal variation of indices, particularly
those using low—levels. Try to foresee possible trigger mechanisms.
Try always a multivariate approach because more indices are better
then 1 or 2 and be careful to avoid overfitting in your verification
process. Use preprocessing. Test on a fully independent sample.

Thanks! For info: agostino.manzato@meteo.fvg.it
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