# **ECMWF:** research developments and future plans

Irina Sandu

ECMWF, Shinfield Park, RG2 9AX, Reading, UK



#### **Outline**

- 1. IFS upgrade Cy41r1 12 May 2015
- 2. Resolution upgrade Cy41r2 8 March 2016
- 3. Future challenges



#### Performance summary (41r1)

|               | Parameter         |          | Anomaly correlation |          |          |    |          |          |     | RMS error |   |          |          |          |          |          |          |          |          |          |          |          |
|---------------|-------------------|----------|---------------------|----------|----------|----|----------|----------|-----|-----------|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Domain        |                   | Level    | L                   | _        | _        | Fo | _        | _        | day |           | _ |          |          | _        | _        | Fo       | _        | ast      | _        | _        | _        |          |
|               |                   | 200 LD   | 1                   | 2        | 3        | 4  | 5        | 6        | 7   | 8         | 9 | 10       | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       |
|               |                   | 100 hPa  | <u> </u>            | *        | <u> </u> | _  | <u> </u> | _        | _   | _         | • |          | _        | <b>A</b> | _        | <b>A</b> | _        | <u> </u> |          | *        | <u> </u> | <u> </u> |
|               | Geopotential      | 500hPa   | <u> </u>            | 4        | <u> </u> | •  | •        | _        |     |           |   |          | Δ        | <u> </u> | <u>.</u> | <u> </u> | <u> </u> | <u> </u> |          |          |          |          |
|               |                   | 850 hPa  | <u> </u>            | _        | <u>.</u> |    |          | _        |     |           |   |          | _        | ▲        | _        | •        | _        | •        |          |          |          |          |
|               |                   | 1000 hPa | _                   | _        | _        |    | _        | _        |     |           |   |          | _        | ▲        | _        | •        | _        |          |          |          |          |          |
|               |                   | 100 hPa  | ▲                   | ▲        | _        | _  | _        | _        |     |           |   |          | ▲        | ▲        | ▲        | ▲        | ▲        | ▲        | _        | _        |          |          |
| Europe        | Temperature       | 500 hPa  | <u> </u>            | •        | _        |    | •        |          |     |           |   |          |          | _        | _        |          | <u>.</u> |          |          |          |          |          |
|               | remperature       | 850 hPa  | _                   | _        | _        |    | _        | _        |     |           |   |          | _        | _        | _        | _        | _        | _        |          |          |          |          |
|               |                   | 1000 hPa | _                   | _        | _        | _  | _        | _        | _   | _         |   |          | <u>.</u> | _        | _        | _        | _        | _        | _        | _        |          |          |
|               | Wind              | 200 hPa  | <b>A</b>            | _        | _        | _  | _        | _        |     |           |   |          | ▲        | ▲        | _        | _        | <u>.</u> | _        |          |          |          |          |
|               |                   | 850 hPa  | _                   | _        | _        |    |          |          |     |           |   |          | _        | _        | _        |          |          |          |          |          |          |          |
|               | Relative humidity | 700 hPa  | •                   | <u>.</u> | _        | _  | _        | <u> </u> |     |           |   |          | <u>.</u> | _        | <b>A</b> |          | <u>.</u> | _        | 4        |          |          |          |
|               | Geopotential      | 100 hPa  | •                   | _        | _        | _  | 4        | •        | 4   | _         | _ | _        | ▲        | <b>A</b> | ▲        | <u> </u> |          |          | <b>^</b> | <b>A</b> | <b>A</b> |          |
|               |                   | 500hPa   |                     | _        | _        | _  | _        | _        |     |           |   | _        | ▲        |          | _        |          | _        | _        | _        | _        | _        | _        |
|               | Geopotential      | 850 hPa  |                     | ▲        | _        | _  | •        | 4        | 4   |           | _ | _        | ▲        | ▲        | _        | •        | _        | _        | _        | _        | _        | _        |
|               |                   | 1000 hPa | <b>^</b>            |          | •        | _  | •        | 4        | 4   |           |   | <u> </u> | ▲        | <b>A</b> | _        |          | _        | _        | •        | _        | _        | _        |
| Extratropical |                   | 100 hPa  |                     | ▲        | _        | _  | _        | <u>.</u> | _   | _         |   |          | ▲        | <b>A</b> | ▲        | ▲        | ▲        |          |          | ▲        | ▲        | _        |
| Northern      | Tomorotom         | 500 hPa  | _                   | _        | _        | _  | _        | _        | _   | _         |   |          | _        | <u>.</u> | _        | _        | _        | _        | _        | _        |          | _        |
| Hemisphere    | Temperature       | 850 hPa  | _                   | _        |          | _  | •        | 4        | 4   | _         |   |          | _        |          |          |          |          | _        | _        |          |          |          |
|               |                   | 1000 hPa | _                   | _        | _        | ▲  | _        | _        | _   | <u> </u>  | _ | _        | _        | _        | <u>.</u> | ▲        | <b>A</b> | _        | _        | _        | _        | _        |
|               | Wind              | 200 hPa  | _                   | _        | _        | _  | _        | _        | _   | _         | _ | _        | <u> </u> | _        |          | _        | _        | _        | _        | _        | _        | _        |
|               | Willia            | 850 hPa  | _                   | _        |          |    |          |          |     | _         | _ | _        | ▲        | _        |          |          |          |          |          |          | _        | _        |
|               | Relative humidity | 700 hPa  | <u>.</u>            | _        | <u>.</u> |    |          |          |     |           | _ |          | ▲        | ▲        | <b>A</b> | ▲        | _        | _        | _        | _        | ▲        | ▲        |

Cycle 41r1 versus Cycle 40r1 verified by analyses at 00 and 12 UTC; 493 days 2 January 2014 - 10 May 2015



|               |                   | 100 hPa  |          |   | _ | _ | _ | _ |          |   |   |   | _ | ▲ |   | _        | <b>A</b> | _    | _ |   |   |   |
|---------------|-------------------|----------|----------|---|---|---|---|---|----------|---|---|---|---|---|---|----------|----------|------|---|---|---|---|
|               | Connetestial      | 500hPa   | <b>A</b> | _ | _ | _ | _ |   |          |   |   |   | _ | _ | _ | _        | _        | _    |   |   |   |   |
|               | Geopotential      | 850 hPa  | _        | • | _ | _ | _ | _ | _        |   |   |   | _ | _ | _ | _        | _        | _    |   |   |   | П |
|               |                   | 1000 hPa | _        | _ | _ | _ | _ |   |          |   |   |   | _ | _ | _ | _        |          |      |   |   |   |   |
| Extratropical |                   | 100 hPa  | ▲        | ▲ | _ | _ | 4 | _ |          |   |   |   | ▲ | ▲ | _ | 4        | _        | _    | 4 | _ |   | _ |
| Southern      |                   | 500 hPa  | _        | _ | _ | _ | _ |   |          |   |   |   | _ | _ | _ | _        | _        | _    | _ |   | _ |   |
| Hemisphere    | Temperature       | 850 hPa  | _        |   |   |   | _ |   |          |   |   |   |   | • | • |          |          |      |   |   |   |   |
|               |                   | 1000 hPa | _        |   | _ | _ | _ | _ |          |   |   |   | _ | _ | _ | _        | _        |      |   |   |   | П |
|               | Wind              | 200 hPa  | _        | _ | _ | _ | _ | _ |          |   |   |   | _ | _ | _ | _        | _        | _    | _ |   |   | П |
|               |                   | 850 hPa  | _        | _ | _ |   | _ |   |          |   |   |   | _ | _ | _ | _        | _        | _    |   | П |   | П |
|               | Relative humidity | 700 hPa  | _        | _ |   | _ | _ |   |          |   |   |   | ▲ | _ | _ | _        | _        | _    | _ | _ |   | _ |
|               |                   | 100 hPa  | <b>A</b> | ▲ | ▲ | ▲ | _ | ▲ | <u> </u> | ▲ | _ | _ | ▲ | ▲ |   | _        | ▲        | _    | A | ▲ | ▲ | ▲ |
|               |                   | 500 hPa  | _        | _ | _ | ▲ | A | ▲ | _        | _ | _ | _ | _ | _ | _ | <b>A</b> | ▲        |      | A | ▲ | _ | _ |
|               | Temperature       | 850 hPa  | ▲        | ▲ | _ | _ | _ | _ | _        |   |   |   |   |   |   |          |          |      |   |   |   | П |
| Tropics       |                   | 1000 hPa |          |   | • |   |   |   |          |   |   |   | _ | ▲ |   |          | Δ        | lack | A | ▲ | _ | _ |
|               | 105-1             | 200 hPa  | _        |   | _ | _ | _ | _ | _        | _ | _ | _ | _ | _ | _ | _        |          |      | _ | _ | _ | _ |
|               | Wind              | 850 hPa  | <b>A</b> | _ | _ | _ | _ | _ | _        | _ | _ | _ | _ | ▲ | _ | _        | _        | _    | _ |   |   |   |
|               | Relative humidity | 700 hPa  | <b>A</b> | _ |   |   | _ | _ |          |   |   |   | ▲ | _ |   |          |          | _    | _ | _ | _ | _ |

- ▲ Cy41r1 better than Cy40r1 statistically highly significant
- ▲ Cy41r1 better than Cy40r1 statistically significant

  Cy41r1 better than Cy40r1 not statistically significant

  Little difference between Cy40r1 and Cy41r1

  Cy41r1 worse than Cy40r1 not statistically significant
- Cy41r1 worse than Cy40r1 statistically significant
- Cy41r1 worse than Cy40r1 statistically highly significant

#### Cy41r1 (May 2015) Highlights

New surface climate fields (land-sea mask, sub-grid orography)

Improved SL-trajectory (stratospheric noise)

MOD

Microphysics upgrade (drizzle, heavy rain, precipitation-type)

Revised detrainment in convection scheme

MACC-II CO<sub>2</sub>/O<sub>3</sub>/CH<sub>4</sub> climatologies; RRTM upgrade

Lake model: Flake

SAT

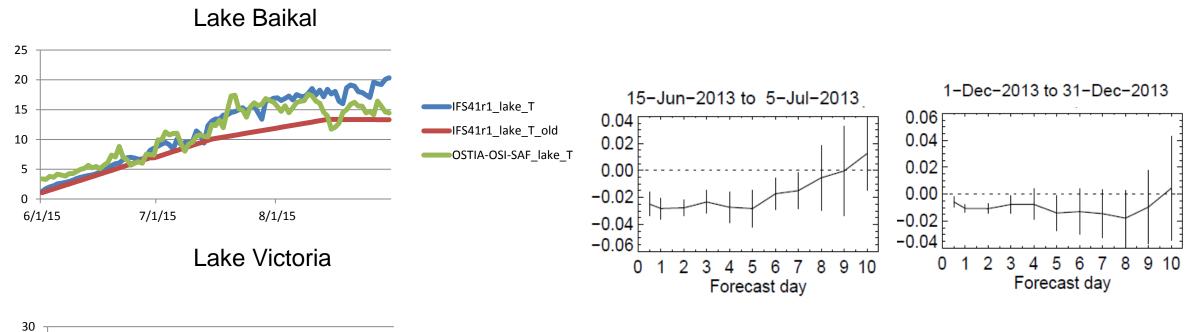
All-sky microwave humidity assimilation upgrade

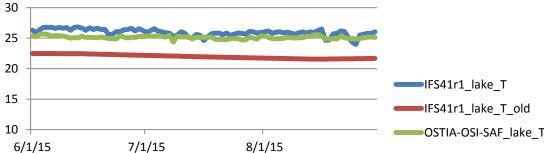
4DVAR

4DVAR upgrade of inner loop resolutions (255L-255L-255L grid)

EDA improved noise filtering, reduced sampling window

**ASCAT** assimilation


ENS


ENS re-forecasts: from 5-member once to 11-member twice weekly

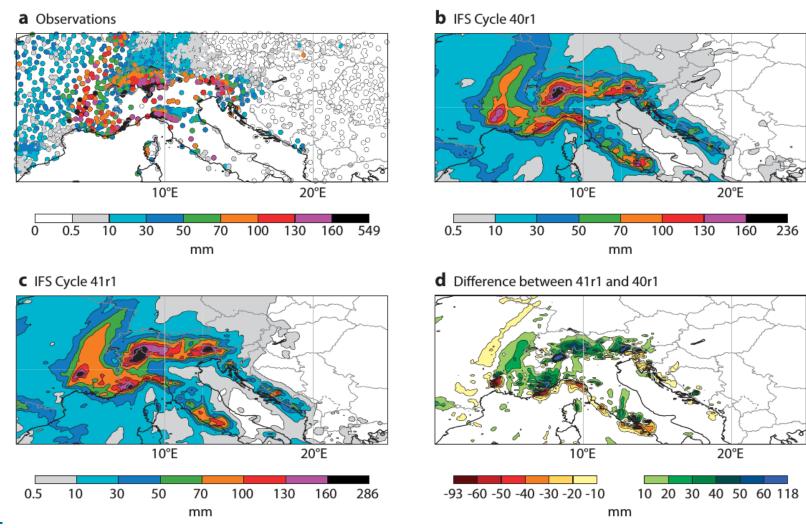
Monthly forecast (leg B) extended to D+46 (from D+32)

Active use of wave modified stress in coupled mode

#### Impact of water bodies (lake model)

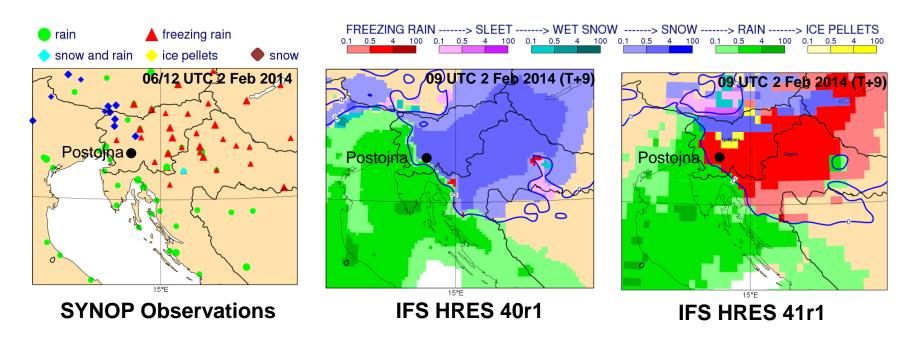





T 20N to 90N 1000hPa: Performance improved (2-3% in summer; 1% in winter)



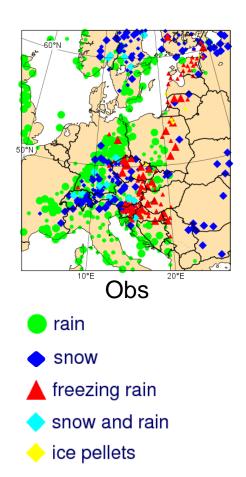
### Microphysics upgrade – orographic precipitation

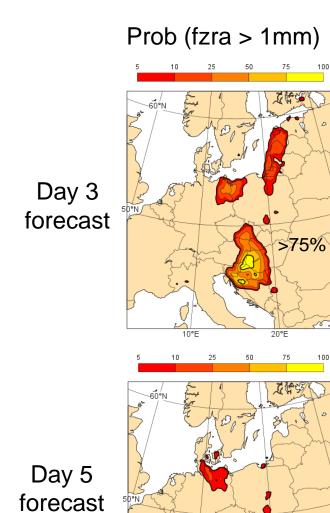

#### Case study – Floods in Italy 3-5 Nov 2014

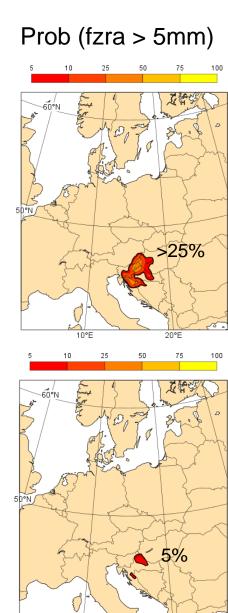
Precipitation accumulation 3-5 Nov 2014



# Microphysics upgrade & new diagnostics for precipitation types – predicting high-impact freezing rain events


- Case Study: Slovenia/Croatia 02 Feb 2014
- Freezing rain caused severe disruption and damage, tranports/power/forests...
- IFS physics at the time (40r1) not able to predict
- New physics in 41r1 allows prediction of freezing rain events
- Evaluation in HRES/ENS shows potential for useful forecasts



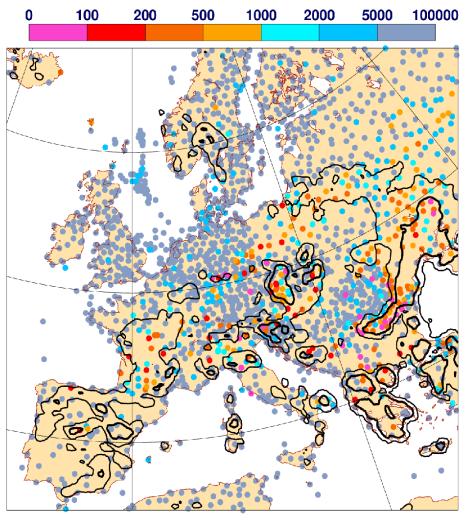




#### Probability of freezing rain accumulation from the IFS ensemble

Case Study: 02 Feb 2014








>25%



#### New diagnostic: Visibility/Fog

Case study: 15 Dec 2014, 3 day probability forecast from IFS ensemble





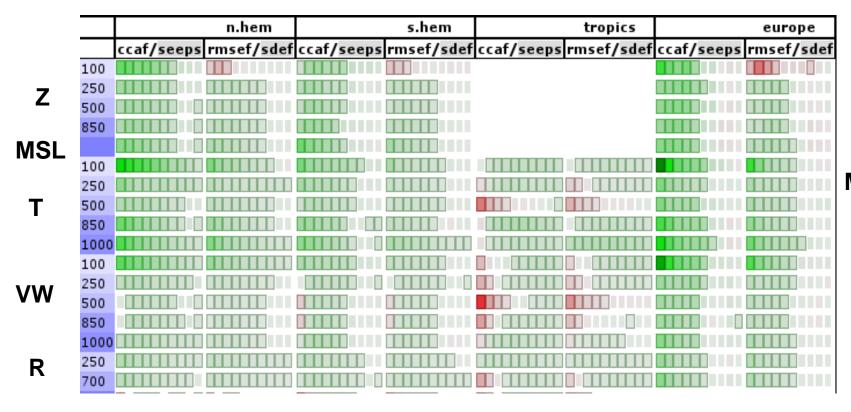
Observed visibility (m) at 06Z 15 Dec 2014 (dots) ENS 3-day forecast probability of fog (<1000m) >10% (thin), >50% (thick)

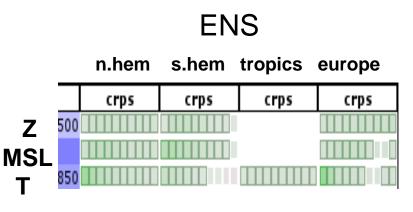
#### **Outline**

- 1. IFS upgrade Cy41r1 12 May 2015
- 2. Resolution upgrade Cy41r2 8 March 2016
- 3. Future challenges



### Resolution upgrade – 8 March 2016


41r1 → 41r2


|           | HRES    |      | ENS            | 4DV             | inner lo            | ops             |                 | EDA             |                 |
|-----------|---------|------|----------------|-----------------|---------------------|-----------------|-----------------|-----------------|-----------------|
| Grid res. |         | LegA | LegB/M'ly      | 1 <sup>st</sup> | 2 <sup>nd</sup>     | 3 <sup>rd</sup> | Outer           | 1 <sup>st</sup> | 2 <sup>nd</sup> |
| 128 km    |         |      |                |                 |                     |                 |                 | TL159           | TL159           |
| 64 km     |         |      | TL319          | TL255           | TL255<br>V<br>TL319 |                 | TL399           | TL191           | TL191           |
| 32 km     |         | TL63 | 9 TCo319       |                 |                     | 12000           | 12000           |                 |                 |
| 16 km     | TL1279  |      | egA+B<br>Co639 |                 |                     |                 | <b>↓</b> TCo639 | )               |                 |
| 9 km      | TCo1279 |      |                |                 |                     |                 |                 |                 |                 |



#### Performance summary: 41r2 (08.15-03.16)

#### **HRES**





T850 : 4-2%

Z500 : 3-2%

Z500 :7-4% AC

3-2% RMSE

T2m, D2m, v10m 1-4% RMSE decrease



**EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS** 

#### Cy41r2 (Highlights)

MOD

Higher resolution 8/16km, new cubic-octahedral reduced Gaussian grid Number of iterations in SL trajectory Radiation-surface LW/SW updating, radiation-surface LW tiling Improved physics for freezing rain TL/AD surface and VDF, non orographic drag

SAT

GPSRO observation error adjustment

Improved data coverage (screening and obs error changes)

Observation operator improvements

4DVAR

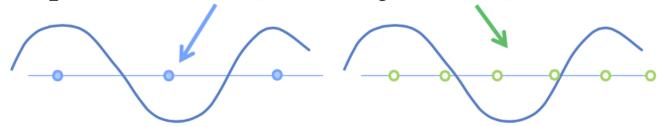
EDA resolution TCo639 fc/outer loop, TL191/T191 inner loops

Same hybrid B both in EDA and HRES

4DVAR configuration TL255/TL319/TL399

**ENS/WAV** 

Various technical changes preparing for the resolution upgrade


**TECH** 

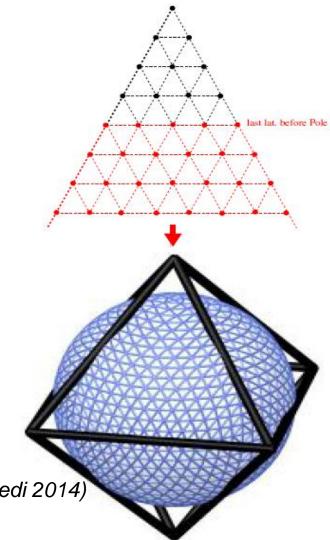
Efficiency gains, HugePages, vectorisation, optimisation, IOSERV

#### Resolution upgrade: cubic grids

2N+1 gridpoints to N waves : T<sub>L</sub> linear grid 4N+1 gridpoints to N waves : T<sub>c</sub> cubic grid

Where T<sub>L</sub> refers to linear grid and T<sub>C</sub> to cubic grid, respectively

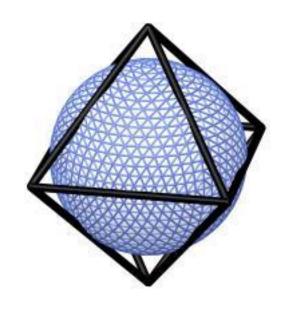



- Mathematically more correct in the presence of cubic non-linearities in the eqns
- Less numerical filtering almost no numerical diffusion, no dealiasing
- Better mass conservation
- Less expensive than the equivalent linear grid (TC1023 cheaper than TL2047)

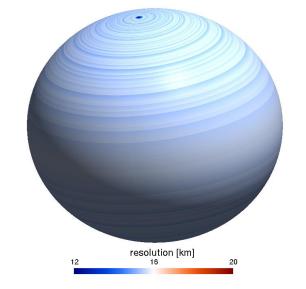
#### Resolution upgrade: octahedral reduced Gaussian grid

It is a reduced Gaussian grid with the same number of latitude circles (NDGL) than the standard Gaussian grid ( $\leftrightarrow$  Gaussian weights) but with a new rule to compute the number of points per latitude circle.

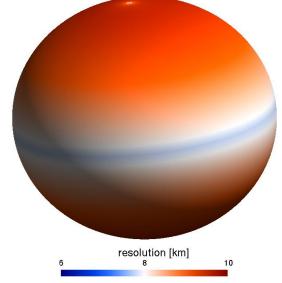
#### Number of points per latitude


 $NLOEN(lat_N)=20 \rightarrow Poles$  $NLOEN(lat_i)=NLOEN(lat_{i-1})+4$ 




Re-think the spectral wave number truncation to gridpoint number ratio (Wedi 2014) The cubic-octahedral grid (TCo1279) at ECMWF (Wedi et al 2015) A new grid for the IFS (Malardel et al., ECMWF Newsletter 146)



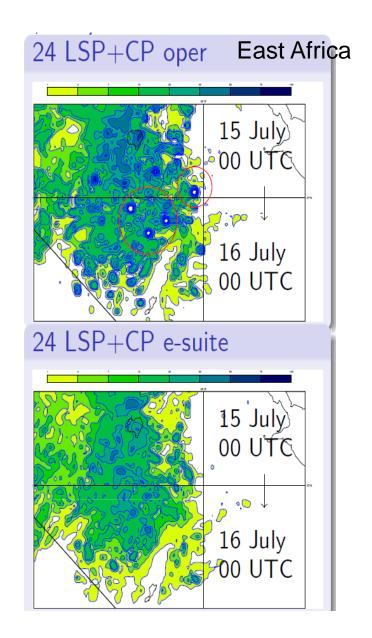

# Resolution upgrade: cubic-octahedral reduced Gaussian grid



Spectral truncation: T1279 but four points describing the shortest wave



T<sub>L</sub> 1279: old reduced Gaussian Grid for HRES

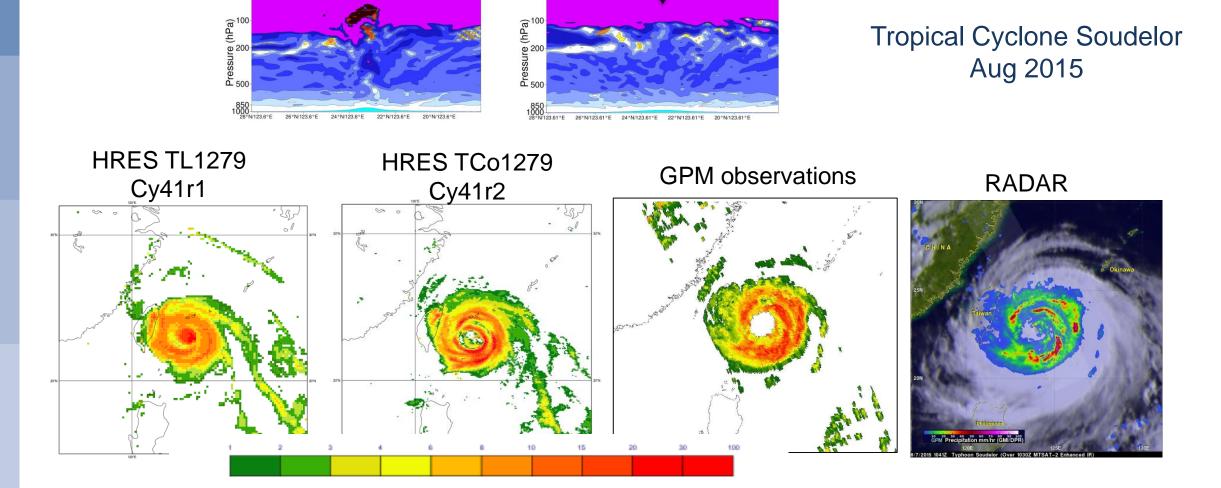



T<sub>co</sub> 1279:New octahedral grid for HRES



### Precipitation spectra: Oper TL1279 and TCo1279

"Grid point storms" seen in resolved precipitation (LSP) in certain regions have gone in TCo1279






#### Improved semi-Lagrangian scheme

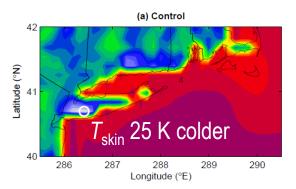
Instability with 3 iterations for semi-Lagrangian departure point in extreme situations (gravity waves above Himalayas, tropical cyclones); increasing to 5 iteration considerably improves the results

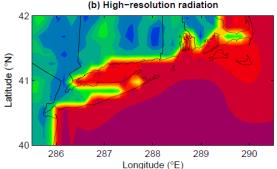
Vertical stability dΘ/dp

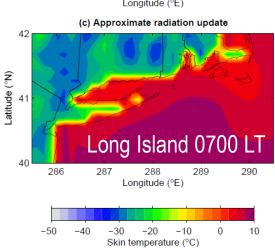


### Radiation approximate update: 41r2 T1279 (case 4 Jan 2014)

Control: radiation at T639/every 1h

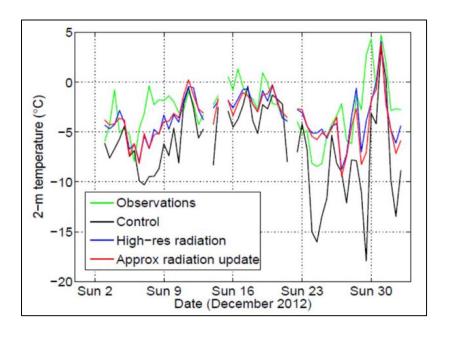

Radiation 12.5% of model time


Radiation every timestep/gridpt


Radiation 12 times more expensive

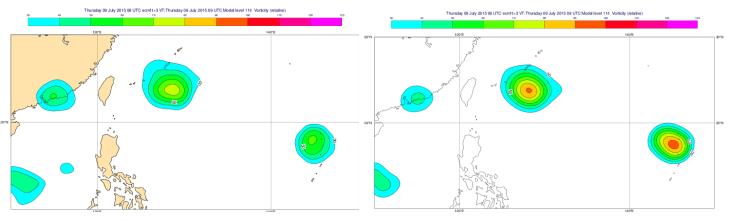
New scheme

Radiation 2% more expensive








- Update surface LW&SW fluxes every timestep and gridpoint according to T<sub>skin</sub> and albedo.
- Removes spurious cold/warm coastal T anomalies with minimal cost.

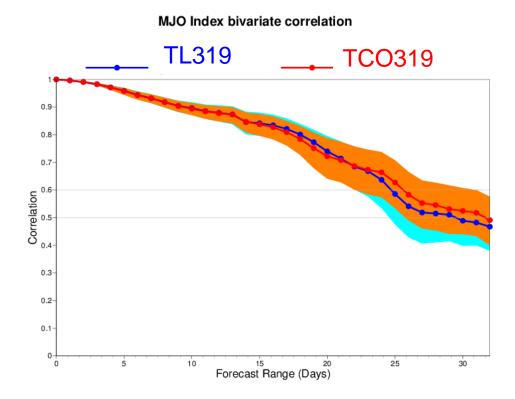


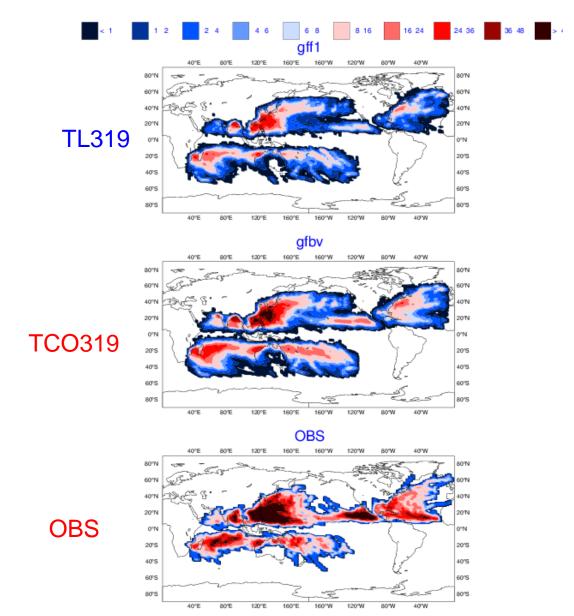
#### EDA improvements, TCo639 + B

Higher TCo639 resolution, smaller-scale variance and B heavily weighted towards the days errors at smaller scales gives more accurate analysis/forecasts—almost TL1279—and more spread where it matters.






41r1 TL399 20150709 0900z 41r2 TCo639 20150709 0900z


"Linfa, Chan-hom, and Nangka"

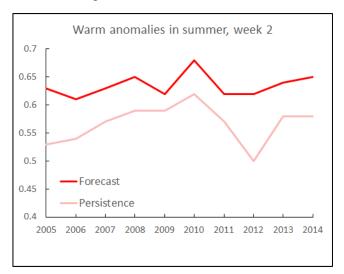


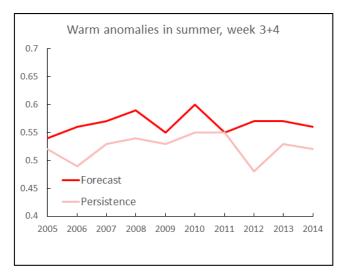
#### Monthly forecast: resolution upgrade

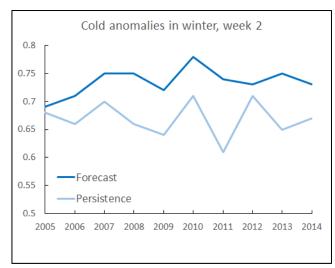
41r1: TL639 day 0-10, TL 319 day 10-46 41r2: Tco639 day 0-15, TCO 319 day 10-46

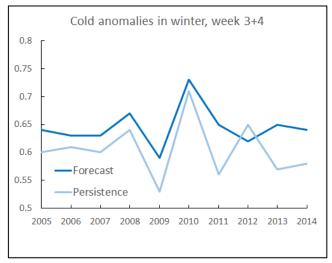





**ECMWF Ensemble Prediction System** 


ensemble size = 15


Number of Tropical storms within 2 degree (x100) Forecast start reference is 1st Feb-May-Aug-Nov 1989-2008

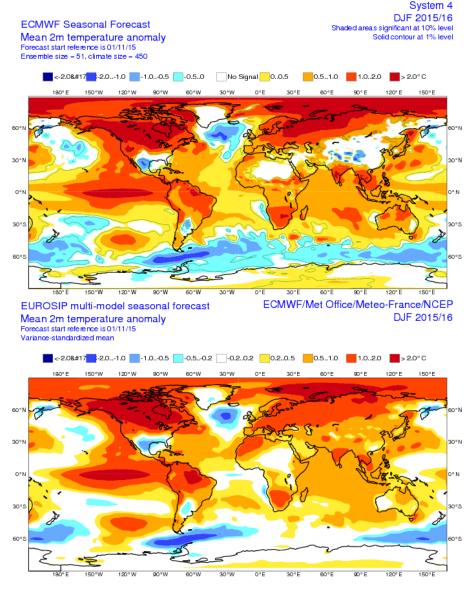



### Monthly forecast – User oriented verification

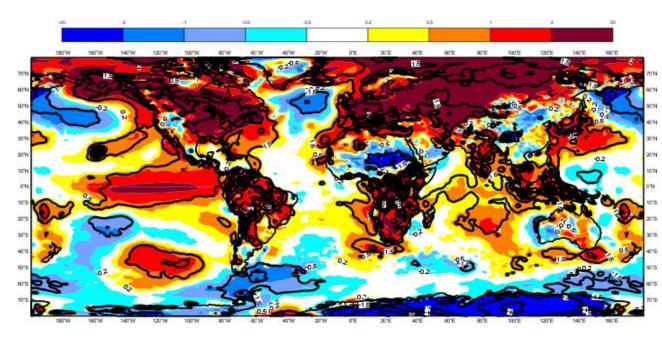









Verification metric: ROC area




2m temperature anomalies

#### Seasonal forecast



# 2mt anomalies for DJF 2016: analysis



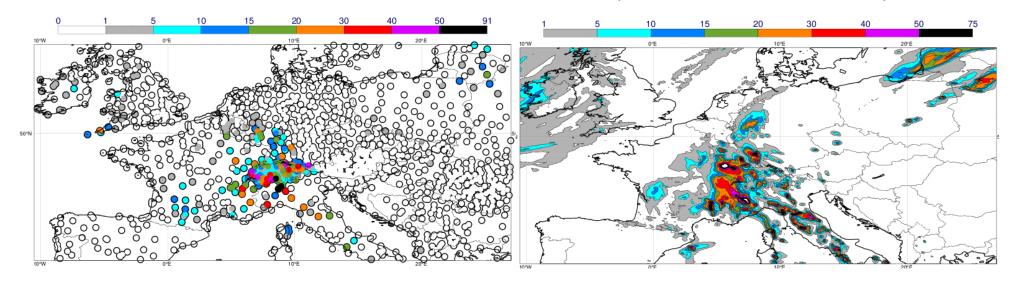


## **Seasonal forecasts - System 5 configuration**

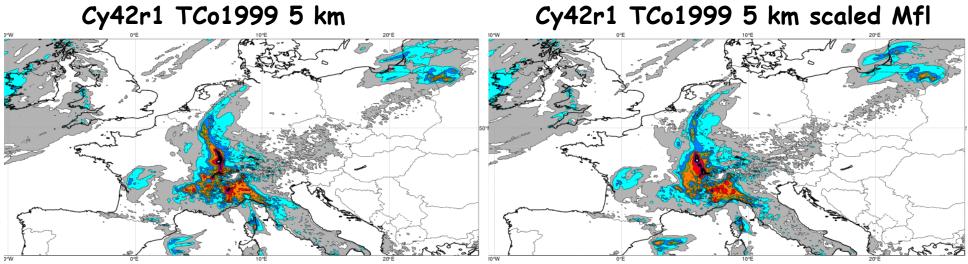
|         |                  | <b>S4</b>          | ERA-5              | S5 Y1 (end '16)       | S5 Y2 (end '17)       |  |  |  |  |  |  |
|---------|------------------|--------------------|--------------------|-----------------------|-----------------------|--|--|--|--|--|--|
|         | Cycle            | 36r4               | 41r2               | 43r1 (d               | or 42r1)              |  |  |  |  |  |  |
|         | Hor. resolution  | T <sub>L</sub> 255 | T <sub>L</sub> 639 | TCo319 (              | or TL511)             |  |  |  |  |  |  |
| Atm     | Vert. resolution | L91                | L137               | L137 (                | or L91)               |  |  |  |  |  |  |
|         | ICs forecast     | Ope-an             |                    | Оро                   | e-an                  |  |  |  |  |  |  |
|         | ICs reforecast   | ERA-I              |                    | ER                    | RA-I                  |  |  |  |  |  |  |
| Land    | ICs forecast     | Ope-an             | Ope-an             | Nudging to Ope-an     |                       |  |  |  |  |  |  |
| Land    | IC reforecast    | ERA-I/Land         |                    | Nudging to ERA-I/Land |                       |  |  |  |  |  |  |
|         | Cycle            | NEMO 3.0/3.1       |                    | NEM                   | 10 3.4                |  |  |  |  |  |  |
| Ocean   | Resolution       | ORCA100z42         |                    | ORCA025z75            |                       |  |  |  |  |  |  |
|         | ICs              | ORAS4              |                    | OR                    | AS5                   |  |  |  |  |  |  |
| Sea Ice | Model            |                    |                    | LII                   | M2                    |  |  |  |  |  |  |
| Sea ice | ICs              |                    |                    | OR                    | AS5                   |  |  |  |  |  |  |
|         | Size forecast    | 51                 |                    | 5                     | 51                    |  |  |  |  |  |  |
| Config  | Size reforecast  | 15                 |                    | 25                    | 25 (51 every quarter) |  |  |  |  |  |  |
| Config  | Forecast length  | 7m (13m)           |                    | 7m (13m ev            | very quarter)         |  |  |  |  |  |  |
|         | Reforecast years | 1981-2010          |                    | 1993-2015 (23y)       | 1981-2015 (35y) ?     |  |  |  |  |  |  |

#### Just some of the forthcoming challenges...

- Dynamical core
- DA science (oper & reanalysis; maximize use of in situ and satellite obs, algorithms, EDA, higher res inner loops)
- Physical processes (resolved and unresolved)
- Increased coupling (land/ocean/atmospheric composition/meteorology)
- Uncertainty parameter perturbations, ENS, EDA
- Predictability and seamless ensembles (EDA/ENS/monthly/seasonal)
- Climate monitoring, ERA-Interim replacement: ERA5
- Scalability



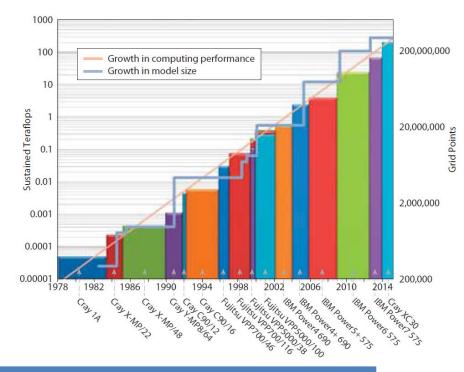

#### A bit of light in the grey-zone


Obs 9 Aug 2015

Cy42r1 Tco1999 no deep

Convection parameterisation at 5km resolution



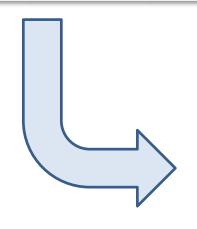

P. Bechtold in collaboration with DWD presented more examples in ECMWF's Annual Seminar on physical processes in present and future largescale models, 2015





### **ECMWF HPC**





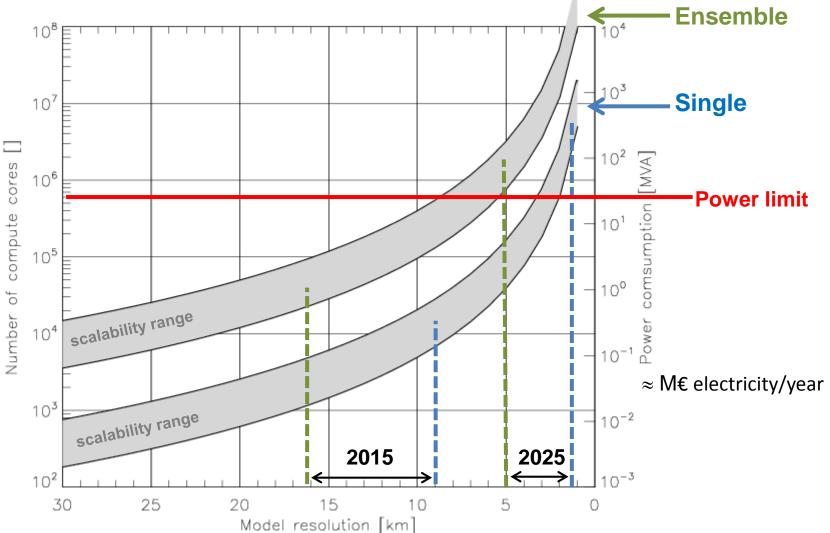

|                              | Phase 1 (Ivybridge) – 2014-<br>2016 | Phase 2 (Broadwell) – 2016-2020     |
|------------------------------|-------------------------------------|-------------------------------------|
| CPU                          | 24 cores (2 x 12 core) @ 2.7GHz     | 36 cores (2 x 18 core) @ 2.1 GHz    |
| Memory/Node                  | 64 Gb (1866 MHz DDR3)               | 128Gb (2400 MHz DDR4)               |
| Memory/Core                  | 2.6 Gb                              | 3.5Gb (+35% cf Phase 1) Overall     |
| Parallel Nodes (per cluster) | 3,400                               | 3,513 (+3% cf Phase 1) increase 1.5 |
| Total Cores (per cluster)    | 84,096                              | 130,212 (+55% cf Phase 1)           |
| Tf sustained (both clusters) | 200                                 | 320 (+60% cf Phase 1)               |

Four-year plan: Projected HPC cost

|                  | 20     | )16    | 2017 | 2018       | 2019 | 2020    |
|------------------|--------|--------|------|------------|------|---------|
| H resolution o/l | TCo639 |        |      |            |      | TCo1279 |
| H resolution i/l | TL191  | TCo191 |      |            |      |         |
| V resolution     | L137   |        |      |            |      |         |
| Coupling         |        |        |      | orca025l75 |      |         |
| Ensemble size    | M25    |        | M50  |            |      |         |
| Window length    | 2x12h  | 4x6h   |      |            |      |         |
| Efficiency gains |        |        |      |            |      |         |
| Nodes:           | 1600   | 2560   | 5120 | 5632       | 5632 | 28160   |
| Factor:          | 1      | 1.6    | 2.0  | 1.1        | 1.0  | 5.0     |
| Acc. factor      | 1      | 1.6    | 3.2  | 3.5        | 3.5  | 17.6    |

**Strategic target:** Global 5km, seamless analysisforecast ensemble in 2025




ENS/legA:

|                          | 2          | 016        | 2017 | 2018 | 2019 | 2020    |
|--------------------------|------------|------------|------|------|------|---------|
| H resolution             | TCo639     |            |      |      |      | TCo1279 |
| V resolution             | L91        |            |      | L137 |      |         |
| Coupling                 | orca100l42 | orca025l75 |      |      |      |         |
| Forecast range           | d10        |            | d15  |      |      |         |
| Ensemble size            | M51        |            |      |      |      |         |
| Reforecast ensemble size | M11        |            |      |      | M15  |         |
| Efficiency gains         |            |            |      |      |      |         |
| Nodes:                   | 1530       | 1683       | 2525 | 3787 | 4355 | 21774   |
| Factor:                  | 1          | 1.1        | 1.5  | 1.5  | 1.2  | 5.0     |
| Acc. factor:             | 1          | 1.1        | 1.7  | 2.5  | 2.8  | 14.2    |



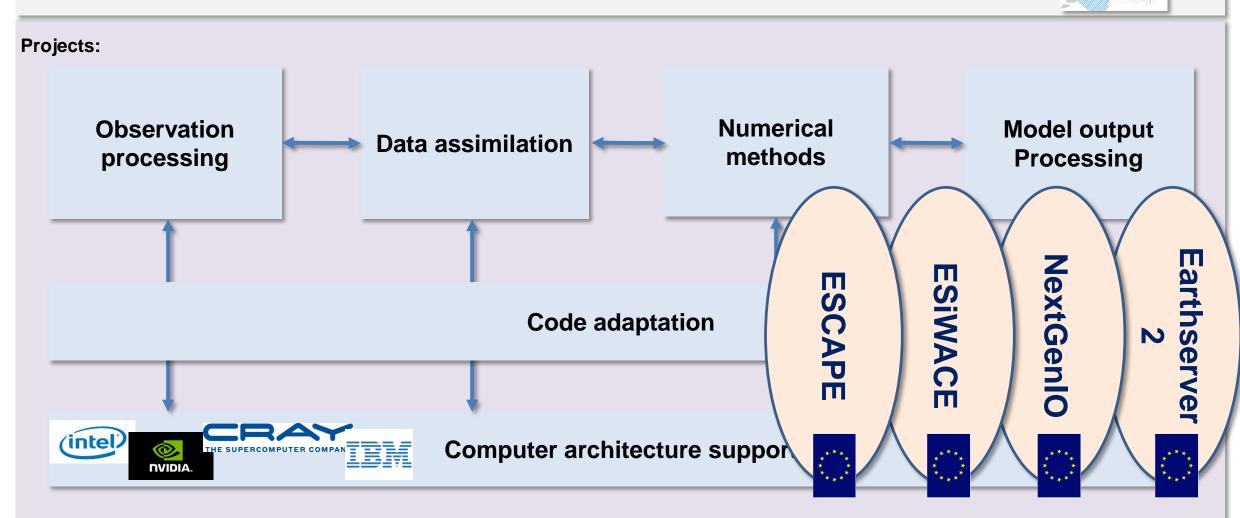
EDA:

# Simple <u>compute</u> projection (only resolution)





[Bauer et al. 2015]


nature

# **ECMWF Scalability Programme**

**Governance:** 

ECMWF, Member states, Regional consortia





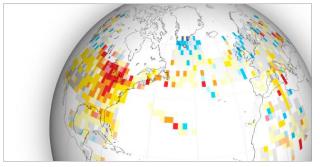
#### Liaisons with ECMWF data and services users

Member and Co-operating States visits: reviewed format to address needs of ECMWF data users.

Using ECMWF's Forecasts (UEF June 2015)

Quantifying and communicating uncertainty

Using ECMWF's Forecasts (UEF 6<sup>th</sup> – 9<sup>th</sup> June 2016)


# "Shaping future approaches to evaluating high impact weather forecasts"

- High impact weather forecasts: measuring long term improvement
- User-oriented
- Seamless verification across different time scales

Website: http://www.ecmwf.int/en/learning/workshops-and-seminars/n/using-ecmwf%27s-forecasts-uef2016



#uef2016



**22 April 2016** - Abstract submission deadline

3 May 2016 - Acceptance notifications

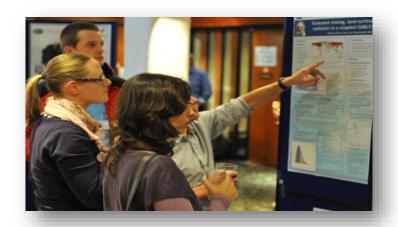


#### Outreach and training

#### **Training Catalogue**

- Computing
- Meteorology
- Software packages and applications

http://www.ecmwf.int/en/learning/training/training-catalogue


Research annual seminar: 5<sup>th</sup> to 9<sup>th</sup> September 2016

Earth system modelling for seamless prediction: on which processes should we focus to further improve atmospheric predictive skill?

#### Workshops

Research and technical topics <a href="http://www.ecmwf.int/en/learning/workshops-and-seminars">http://www.ecmwf.int/en/learning/workshops-and-seminars</a>







Thank you for your attention ...

