Atmospheric instability and sounding-derived indices

by Agostino Manzato

OSMER - ARPA Friuli Venezia Giulia

Seminar made in Teolo on 17 November 2015

(version updated on 19 November 2015)

ARPA FVG - OSMER Osservatorio meteorologico regionale

イロト イヨト イヨト

크

Outline

- Basic variables and adiabatic processes.
- Atmosphere (in)stability.
- 8 Radiosoundings: skew-T and Thetaplot.
- Sounding-derived indices and their correlations.
- Intro to forecasting meteo events with sounding-derived indices.

Europe at 500 hPa as seen by RDS alone (WND barbs, Z lines, Θ_e filled)

(B)

Section 1

Basic variables and adiabatic processes

Source: http://www.its.caltech.edu/~atomic/snowcrystals/ice/ice.htm

Air is a *mixture* made by a variable part (0-4%) of H₂O (mass 18) plus a *fixed* proportion of other gases: 78% N₂ (mass 28), 21% of O₂ (mass 32), 0.9% of Ar, 0.03% of CO₂,...

イロト 不得下 イヨト イヨト 二日

- Air is a *mixture* made by a variable part (0-4%) of H₂O (mass 18) plus a *fixed* proportion of other gases: 78% N₂ (mass 28), 21% of O₂ (mass 32), 0.9% of Ar, 0.03% of CO₂,...
- For this reason *meteorologists* define "air" as a mix of 2 ideal gases: 1) DRY AIR: $\mathbf{p_d} = \rho_d \mathbf{R_d} \mathbf{T}$, with $R_d = 286.99 \text{ J}/(\text{kg K})$;
 - 2) VAPOR: $\mathbf{e} = \rho_{\mathbf{v}} \mathbf{R}_{\mathbf{v}} \mathbf{T}$, with $R_{\mathbf{v}} = R_d / 0.62198 = 461.4 \text{ J} / (\text{kg K})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- Air is a *mixture* made by a variable part (0-4%) of H₂O (mass 18) plus a *fixed* proportion of other gases: 78% N₂ (mass 28), 21% of O₂ (mass 32), 0.9% of Ar, 0.03% of CO₂,...
- For this reason *meteorologists* define "air" as a mix of 2 ideal gases: 1) DRY AIR: $\mathbf{p_d} = \rho_d \mathbf{R_d} \mathbf{T}$, with $R_d = 286.99 \text{ J/(kg K)}$; 2) VAPOR: $\mathbf{e} = \rho_v \mathbf{R_v} \mathbf{T}$, with $R_v = R_d/0.62198 = 461.4 \text{ J/(kg K)}$.
- Air pressure is $\mathbf{p} = \mathbf{p}_{\mathbf{d}} + \mathbf{e}$; air density is $\rho = \rho_{\mathbf{d}} + \rho_{\mathbf{v}} = \rho_{\mathbf{d}}(\mathbf{1} + \mathbf{q})$, where $\mathbf{q} = \rho_{\mathbf{v}}/\rho_{\mathbf{d}} = \mathbf{0.622}\frac{\mathbf{e}}{\mathbf{p}-\mathbf{e}}$ is the water vapor mixing ratio. One can define virtual temperature $T_{\mathbf{v}} \cong T(1 + 0.6q)$ so that $\mathbf{p} = \rho \mathbf{R}_{\mathbf{d}} \mathbf{T}_{\mathbf{v}}$.

- Air is a *mixture* made by a variable part (0-4%) of H₂O (mass 18) plus a *fixed* proportion of other gases: 78% N₂ (mass 28), 21% of O₂ (mass 32), 0.9% of Ar, 0.03% of CO₂,...
- For this reason *meteorologists* define "air" as a mix of 2 ideal gases: 1) DRY AIR: $\mathbf{p_d} = \rho_d \mathbf{R_d} \mathbf{T}$, with $R_d = 286.99 \text{ J/(kg K)}$; 2) VAPOR: $\mathbf{e} = \rho_v \mathbf{R_v} \mathbf{T}$, with $R_v = R_d/0.62198 = 461.4 \text{ J/(kg K)}$.
- Air pressure is $\mathbf{p} = \mathbf{p}_{\mathbf{d}} + \mathbf{e}$; air density is $\rho = \rho_{\mathbf{d}} + \rho_{\mathbf{v}} = \rho_{\mathbf{d}}(\mathbf{1} + \mathbf{q})$, where $\mathbf{q} = \rho_{\mathbf{v}}/\rho_{\mathbf{d}} = \mathbf{0.622}\frac{\mathbf{e}}{\mathbf{p}-\mathbf{e}}$ is the water vapor mixing ratio. One can define virtual temperature $T_{\mathbf{v}} \cong T(1 + 0.6q)$ so that $\mathbf{p} = \rho \mathbf{R}_{\mathbf{d}} \mathbf{T}_{\mathbf{v}}$.
- The maximum quantity of water vapor (before condensation) depends only by air *temperature*, via the *saturation vapor pressure*, simplified by: e_{sat}(T) = 6.11 · e^{19.8·T}/_{T+273}. *Relative humidity* is RH = 100 · e/(e_{sat}(T)). In NE Italy *q* varies between a minimum of 1 g/kg to a maximum of about 22 g/kg. Note that H₂O is lighter than dry air (molecular mass of 18 vs. 29): the more moist air, the less dense it is.

Saturation diagram: the point of view of water

Saturation diagram: the point of view of water

Lifted Condensation Level temperature, T_{LCL} , then it follow a wet adiabat. Air mixture is defined by 4 variables: p, T, ρ plus a variable for humidity, like q or RH or T_d or dew-point depressure $(T - T_d)$.

The point of view of the air parcel

When the air parcel is lifted adiabatically it follows a dry adiabat until I CL. If from I CL the parcel is sink pseudo-adiabatically along a wet adiabat (adding moisture) then it reaches the initial level at the *wet-bulb* temperature, T_{w} .

The point of view of the air parcel

When the air parcel is lifted adiabatically it follows a dry adiabat until I CL. If from I CL the parcel is *sink* pseudo-adiabatically along a wet adiabat (adding moisture) then it reaches the initial level at the *wet-bulb* temperature, T_w .

If, after LCL, it is *lifted* along a wet pseudo-adiabat until all moisture is removed (q = 0) and then it is sink down at the initial level through a dry adiabat, it reaches the *equivalent temperature*, T_e . "Equivalent" because it considers the warming due to the latent heat of vapor condensation.

Referring everything to a standard level

To make things more comparable, temperatures can be referred to the standard level (1000 hPa). Bringing the initial parcel there along a dry adiabat defines the *potential temperature*, Θ . The dry adiabat used to define T_{e} intersects the 1000 hPa level at the *equivalent* potential temperature Θ_{e} .

Referring everything to a standard level

To make things more comparable, temperatures can be referred to the standard level (1000 hPa). Bringing the initial parcel there along a dry adiabat defines the *potential temperature*, Θ . The dry adiabat used to define T_e intersects the 1000 hPa level at the *equivalent* potential temperature, Θ_{e} .

Adding moisture till saturation at the initial level $[q = q_{sat} = 0.622 e_{sat}(\tau)/(p - e_{sat}(\tau))]$ and doing the same process done for Θ_e defines the saturated equivalent potential temperature, Θ_{es} .

Referring everything to a standard level

To make things more comparable, temperatures can be referred to the standard level (1000 hPa). Bringing the initial parcel there along a dry adiabat defines the *potential temperature*, Θ . The dry adiabat used to define T_e intersects the 1000 hPa level at the *equivalent* potential temperature, Θ_e .

Adding moisture till saturation at the initial level $\left[q = q_{sat} = 0.622 e_{sat}(T)/(p - e_{sat}(T))\right]$ and doing the same process done for Θ_e defines the saturated equivalent potential temperature, Θ_{es} . Cooling the initial air until saturation conserving *e* (i.e. starting saturated from T_d) and doing the same process 7 defines the dew-point equivalent potential temperature, Θ_{ed} .

• Temperatures at the air parcel level: T_d , T_w and T.

- Temperatures at the air parcel level: T_d , T_w and T.
- Bringing air to the 1000 hPa level:
 - using a dry adiabatic process (potential transformation): Θ (or Θ_{v} ...).

- Temperatures at the air parcel level: T_d , T_w and T.
- Bringing air to the 1000 hPa level:
 - using a dry adiabatic process (potential transformation): Θ (or Θ_{v} ...).
 - using a saturated pseudo-adiabatic lifting until q = 0, followed by a dry adiabatic sinking (equivalent transformation):
 - $\Theta_{ed} = \Theta_e(p, T_d, q), \Theta_e(p, T, q) \text{ and } \Theta_{es} = \Theta_e(p, T, q_{sat})$ (note that Θ_{es} depends only by p and T!), where (Bolton 1980):

$$\Theta_{e}(p, T, q) = T \cdot \left(\frac{1000}{p}\right)^{0.2854 (1-0.28q)} \cdot e^{q(1+0.81q) \left(\frac{3376}{T_{LCL}} - 2.54\right)}$$
(1)

$$T_{LCL}(T, e) = \frac{2840}{3.5 \cdot \ln(T) - \ln(e) - 4.805} + 55$$
(2)

- Temperatures at the air parcel level: T_d , T_w and T.
- Bringing air to the 1000 hPa level:
 - using a dry adiabatic process (potential transformation): Θ (or Θ_{v} ...).
 - using a saturated pseudo-adiabatic lifting until q = 0, followed by a dry adiabatic sinking (equivalent transformation):
 - $\Theta_{ed} = \Theta_e(p, T_d, q), \Theta_e(p, T, q) \text{ and } \Theta_{es} = \Theta_e(p, T, q_{sat})$ (note that Θ_{es} depends only by p and T!), where (Bolton 1980):

$$\Theta_{e}(p, T, q) = T \cdot \left(\frac{1000}{p}\right)^{0.2854 (1-0.28q)} \cdot e^{q(1+0.81q) \left(\frac{3376}{T_{LCL}} - 2.54\right)}$$
(1)

$$T_{LCL}(T, e) = \frac{2840}{3.5 \cdot \ln(T) - \ln(e) - 4.805} + 55$$
(2)

• using a saturated pseudo-adiabat sinking (wet-bulb transformation): Θ_{wd} , Θ_w and Θ_{ws} , used mainly by French people.

- Temperatures at the air parcel level: T_d , T_w and T.
- Bringing air to the 1000 hPa level:
 - using a dry adiabatic process (potential transformation): Θ (or Θ_{ν} ...).
 - using a saturated pseudo-adiabatic lifting until q = 0, followed by a dry adiabatic sinking (equivalent transformation):
 - $\Theta_{ed} = \Theta_e(p, T_d, q), \Theta_e(p, T, q) \text{ and } \Theta_{es} = \Theta_e(p, T, q_{sat})$ (note that Θ_{es} depends only by p and T!), where (Bolton 1980):

$$\Theta_{e}(p, T, q) = T \cdot \left(\frac{1000}{p}\right)^{0.2854 (1-0.28q)} \cdot e^{q(1+0.81q) \left(\frac{3376}{T_{LCL}} - 2.54\right)}$$
(1)

$$T_{LCL}(T, e) = \frac{2840}{3.5 \cdot \ln(T) - \ln(e) - 4.805} + 55$$
(2)

- using a saturated pseudo-adiabat sinking (wet-bulb transformation): Θ_{wd} , Θ_{w} and Θ_{ws} , used mainly by French people.

Dry, moist and pseudo-saturated adiabatic processes

• Dry adiabatic: air is considered dry (neglecting the vapor enthalpy)

No saturation
$$(q = q_0 = constant)$$
 and $c_p \simeq c_{pd} = 7/2R_d$ (dry air is biatomic) (3)

Invariant :
$$\Theta(T, p) = (T) \cdot \left(\frac{1000}{p}\right)^{R_d/c_{pd}} = (T) \cdot \left(\frac{1000}{p}\right)^{2/7}$$
 (4)

LapseRate:
$$-\frac{\mathrm{d}T}{\mathrm{d}z} = \mathbf{\Gamma}_{\mathbf{d}} = \frac{\mathbf{g}}{\mathbf{c}_{\mathbf{pd}}} \cong 9.76 \,^{\mathrm{o}}\mathrm{C/km}$$
 (5)

Dry, moist and pseudo-saturated adiabatic processes

• Dry adiabatic: air is considered dry (neglecting the vapor enthalpy)

No saturation
$$(q = q_0 = constant)$$
 and $c_p \simeq c_{pd} = 7/2R_d$ (dry air is biatomic) (3)

Invariant :
$$\Theta(T, p) = (T) \cdot \left(\frac{1000}{p}\right)^{R_d/c_{pd}} = (T) \cdot \left(\frac{1000}{p}\right)^{2/7}$$
 (4)

LapseRate :
$$-\frac{\mathrm{d}T}{\mathrm{d}z} = \Gamma_{\mathbf{d}} = \frac{\mathbf{g}}{\mathbf{c}_{\mathbf{pd}}} \cong 9.76 \,^{\mathrm{o}}\mathrm{C/km}$$
 (5)

Moist adiabatic: air never saturated but vapor is considered

No saturation $(q = q_0 = constant)$ and $mc_p = m_d c_{pd} + m_v c_{pv} = m_d 7/2R_d + m_v 4R_v$ (vapor is triatomic) (6)

Invariant:
$$\Theta_{Paluch}(T, p, q_0) = (T) \cdot \left(\frac{1000}{p}\right)^{(R_d + R_v q_0)/(c_{pd} + c_{pv} q_0)} = (T) \cdot \left(\frac{1000}{p}\right)^{\frac{2}{7} \frac{1 + R_v/R_d q_0}{1 + \frac{8}{7}R_v/R_d q_0}}$$
 (5)

The moist adiabat (Paluch 1979) approximates the dry adiabat as much as $8/7 \cong 1$, that is why it is often neglected.

9 / 63

Dry, moist and pseudo-saturated adiabatic processes

• Dry adiabatic: air is considered dry (neglecting the vapor enthalpy)

No saturation
$$(q = q_0 = constant)$$
 and $c_p \simeq c_{pd} = 7/2R_d$ (dry air is biatomic) (3)

Invariant :
$$\Theta(T, p) = (T) \cdot \left(\frac{1000}{p}\right)^{R_d/c_{pd}} = (T) \cdot \left(\frac{1000}{p}\right)^{2/7}$$
 (4)

LapseRate :
$$-\frac{\mathrm{d}\,T}{\mathrm{d}\,z} = \Gamma_{\mathbf{d}} = \frac{\mathbf{g}}{\mathbf{c}_{\mathbf{pd}}} \cong 9.76 \,^{\mathrm{o}}\mathrm{C/km}$$
 (5)

Moist adiabatic: air never saturated but vapor is considered

No saturation $(q = q_0 = constant)$ and $mc_p = m_d c_{pd} + m_v c_{pv} = m_d 7/2R_d + m_v 4R_v$ (vapor is triatomic) (6)

Invariant :
$$\Theta_{Paluch}(T, p, q_0) = (T) \cdot \left(\frac{1000}{p}\right)^{(R_d + R_v q_0)/(c_{pd} + c_{pv} q_0)} = (T) \cdot \left(\frac{1000}{p}\right)^{\frac{2}{7} \frac{1 + R_v/R_d q_0}{1 + \frac{8}{7}R_v/R_d q_0}}$$
 (7)

The moist adiabat (Paluch 1979) approximates the dry adiabat as much as $8/7 \cong 1$, that is why it is often neglected.

• Saturated (or wet) pseudo-adiabatic: air is always saturated and condensate falls out of the lifted parcel

saturation
$$q = q_{sat}(p, T)$$
, and $c_{p \ liq} \cong 0$ and $c_{p \ ice} \cong 0$ (8)

Invariant :
$$\Theta_e(T, p, q) =$$
equation(1) (9)

LapseRate :
$$-\frac{d}{dz} T = \Gamma_s(\mathbf{p}, \mathbf{q}) \cong 5 \div 8 \,^{\circ} C/km$$
 (low troposphere $\div 500 \,hPa$) (10)

It is called "pseudo" because it is not reversible (rainfall).

Section 2

Atmosphere (in)stability

It is based on the following assumptions:

It is based on the following assumptions:

 the initial parcel rises along completely dry adiabat until it becomes saturated, and afterward it rises along a saturated pseudo-adiabat.
"Adiabatically" means without exchange of heat between parcel and environment;

イロン イロン イヨン イヨン 三日

It is based on the following assumptions:

- the initial parcel rises along completely dry adiabat until it becomes saturated, and afterward it rises along a saturated pseudo-adiabat. "Adiabatically" means without exchange of heat between parcel and environment;
- 2 the environment is in hydrostatic equilibrium, i. e. dp/dz = -gρ and the parcel pressure is always equal to the environment pressure at the same height (no pressure perturbations);

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

It is based on the following assumptions:

- the initial parcel rises along completely dry adiabat until it becomes saturated, and afterward it rises along a saturated pseudo-adiabat. "Adiabatically" means without exchange of heat between parcel and environment;
- 2 the environment is in *hydrostatic equilibrium*, i. e. $\frac{d\mathbf{p}}{d\mathbf{z}} = -\mathbf{g}\rho$ and the parcel pressure is always equal to the environment pressure at the same height (no pressure perturbations);
- the rising parcel does not mix with the environment (no entrainment and no dilution);

It is based on the following assumptions:

- the initial parcel rises along completely dry adiabat until it becomes saturated, and afterward it rises along a saturated pseudo-adiabat. "Adiabatically" means without exchange of heat between parcel and environment;
- **2** the environment is in *hydrostatic equilibrium*, i. e. $\frac{d\mathbf{p}}{d\mathbf{z}} = -\mathbf{g}\rho$ and the parcel pressure is always equal to the environment pressure at the same height (no pressure perturbations);
- the rising parcel does not mix with the environment (no entrainment and no dilution);
- In the simplest version (conserving Θ_e), during the saturated pseudo-adiabat the condensed water falls out, so that there is no condensate load and no latent heath of freezing.

P.S. Otherwise one could parametrize the liquid water-to-ice transition and consider the load of condensed water

(which reduce buoyancy) and the latent heat of freezing (which increase buoyancy). In such a case Θ_e is not conserved

and buoyancy is computed using the virtual-cloud temperature of the parcel, T_{vc} (see Manzato and Morgan 2003).

Parcel buoyancy

During its inviscid lifting the parcel will experience the following vertical acceleration (called Archimedes buoyancy):

$$\mathbf{B}(\mathbf{z}) = \frac{\mathrm{d}w}{\mathrm{d}t} = -\frac{1}{\rho_{p}} \cdot \frac{\mathrm{d}p}{\mathrm{d}z} - g = -\frac{1}{\rho_{p}} \cdot (-g\rho_{e}) - g = \mathbf{g} \frac{\rho_{e}(\mathbf{z}) - \rho_{p}(\mathbf{z})}{\rho_{p}(\mathbf{z})}$$
(11)

where w(z) is the parcel vertical velocity, ρ_p and ρ_e are the parcel and environment density respectively. The parcel will continue to rise if it is *less dense* than the surrounding environment.

Parcel buoyancy

During its inviscid lifting the parcel will experience the following vertical acceleration (called Archimedes buoyancy):

$$\mathbf{B}(\mathbf{z}) = \frac{\mathrm{d}w}{\mathrm{d}t} = -\frac{1}{\rho_{p}} \cdot \frac{\mathrm{d}p}{\mathrm{d}z} - g = -\frac{1}{\rho_{p}} \cdot (-g\rho_{e}) - g = \mathbf{g} \frac{\rho_{e}(\mathbf{z}) - \rho_{p}(\mathbf{z})}{\rho_{p}(\mathbf{z})}$$
(11)

where w(z) is the parcel vertical velocity, ρ_p and ρ_e are the parcel and environment density respectively. The parcel will continue to rise if it is *less dense* than the surrounding environment. Approximating the air as *dry*, then $\rho_p \cong \rho_{pd} = p/(R_d \cdot T_p)$ and $\rho_e \cong \rho_{ed} = p/(R_d \cdot T_e)$, so that:

$$\mathbf{B}(\mathbf{z}) \cong \mathbf{g} \cdot \frac{\mathbf{T}_{\mathbf{p}}(\mathbf{z}) - \mathbf{T}_{\mathbf{e}}(\mathbf{z})}{\mathbf{T}_{\mathbf{e}}(\mathbf{z})}$$
(12)

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Parcel buoyancy

During its inviscid lifting the parcel will experience the following vertical acceleration (called Archimedes buoyancy):

$$\mathbf{B}(\mathbf{z}) = \frac{\mathrm{d}w}{\mathrm{d}t} = -\frac{1}{\rho_{p}} \cdot \frac{\mathrm{d}p}{\mathrm{d}z} - g = -\frac{1}{\rho_{p}} \cdot (-g\rho_{e}) - g = \mathbf{g} \frac{\rho_{\mathbf{e}}(\mathbf{z}) - \rho_{\mathbf{p}}(\mathbf{z})}{\rho_{\mathbf{p}}(\mathbf{z})}$$
(11)

where w(z) is the parcel vertical velocity, ρ_p and ρ_e are the parcel and environment density respectively. The parcel will continue to rise if it is *less dense* than the surrounding environment. Approximating the air as *dry*, then $\rho_p \cong \rho_{pd} = p/(R_d \cdot T_p)$ and $\rho_e \cong \rho_{ed} = p/(R_d \cdot T_e)$, so that:

$$\mathbf{B}(\mathbf{z}) \cong \mathbf{g} \cdot \frac{\mathbf{T}_{\mathbf{p}}(\mathbf{z}) - \mathbf{T}_{\mathbf{e}}(\mathbf{z})}{\mathbf{T}_{\mathbf{e}}(\mathbf{z})}$$
(12)

Instead, if one would consider also the vapor contribution, then he can replace the normal temperatures with the virtual temperatures (called the *"virtual correction"*), but then he should also conserve Θ_{Paluch} instead of the simpler potential temperature Θ during the "moist" adiabat... In both 12 cases, during the saturated pseudo-adiabat it is conserved Θ_e .

The vertical profile of a parcel buoyancy and its integral

Taking a small part of environment as initial parcel and applying the Lifted Parcel Theory, it may happen that the parcel will become buoyant [i. e. B(z) > 0], from its Level of Free Convection, LFC, to its Equilibrium Level, EL.

The vertical profile of a parcel buoyancy and its integral

Taking a small part of environment as initial parcel and applying the Lifted Parcel Theory, it may happen that the parcel will become buoyant [i. e. B(z) > 0], from its Level of Free Convection, LFC, to its Equilibrium Level, EL.

Since $B(z) = \frac{dw}{dt} = w \cdot \frac{dw}{dz}$, integrating B(z) along the vertical profile one obtains a squared vertical velocity, i. e. a kinetic energy. The *Convective Available Potential Energy*, CAPE, is obtained integrating the buoyancy from LFC to EL: $CAPE = \int_{z_{LFC}}^{z_{EL}} B(z) \cdot dz = 1/2w^2$, where $z_{LFC} = 1/2$

Potential instability

Starting from an initial level z_0 of an atmospheric profile, in case that the lifted air becomes more dense than the environment, one can think that an external agent will provide the energy (*forcing*) needed to –eventually–reach its LFC. This energy is the *Convective Inhibition*, CIN:

$$\mathsf{CIN} = \int_{z_0}^{z_{\mathsf{LFC}}} \mathbf{B}(\mathbf{z}) \cdot \mathrm{d}\mathbf{z} < 0 \tag{14}$$

Potential instability

Starting from an initial level z_0 of an atmospheric profile, in case that the lifted air becomes more dense than the environment, one can think that an external agent will provide the energy (*forcing*) needed to –eventually–reach its LFC. This energy is the *Convective Inhibition*, CIN:

$$CIN = \int_{z_0}^{z_{LFC}} \mathbf{B}(\mathbf{z}) \cdot d\mathbf{z} < 0 \tag{14}$$

If an atmospheric profile has at least a parcel in the low levels for which it is possible to find a LFC then the profile is said to be *potentially unstable*.

Potential instability

Starting from an initial level z_0 of an atmospheric profile, in case that the lifted air becomes more dense than the environment, one can think that an external agent will provide the energy (*forcing*) needed to –eventually–reach its LFC. This energy is the *Convective Inhibition*, CIN:

$$\mathsf{CIN} = \int_{z_0}^{z_{\mathsf{LFC}}} \mathbf{B}(\mathbf{z}) \cdot \mathrm{d}\mathbf{z} < 0 \tag{14}$$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

If an atmospheric profile has at least a parcel in the low levels for which it is possible to find a LFC then the profile is said to be *potentially unstable*. Potential instability is a characteristic of the whole profile, with respect to *very large* displacement of one of his low levels, because LFC could be much higher than the initial level z_0 .
Potential instability

Starting from an initial level z_0 of an atmospheric profile, in case that the lifted air becomes more dense than the environment, one can think that an external agent will provide the energy (*forcing*) needed to –eventually–reach its LFC. This energy is the *Convective Inhibition*, CIN:

$$\mathsf{CIN} = \int_{z_0}^{z_{\mathsf{LFC}}} \mathbf{B}(\mathbf{z}) \cdot \mathrm{d}\mathbf{z} < 0 \tag{14}$$

If an atmospheric profile has at least a parcel in the low levels for which it is possible to find a LFC then the profile is said to be *potentially unstable*. Potential instability is a characteristic of the whole profile, with respect to *very large* displacement of one of his low levels, because LFC could be much higher than the initial level z_0 .

The condition that there is an initial level for which it is possible to find a LFC is *equivalent* to say that there is an initial parcel having CAPE> 0. As we will see on the Thetaplot diagram, it is *equivalent* to say that the atmospheric profile has a low-level $\Theta_e|_{low} = \Theta_e(z_0)$ which is higher then a mid-level $\Theta_{es}|_{mid}$, i.e. MaxBuoyancy= $\Theta_e|_{low} - \Theta_{es}|_{mid} > 0$.

Static instability

A layer of an atmospheric profile is said to be *absolutely stable* if its lapse rate decreases less than that of the saturated pseudo-adiabat, i.e. $\Gamma = -\frac{dT}{dz} < \Gamma_s \cong 5$.

Static instability

A layer of an atmospheric profile is said to be *absolutely stable* if its lapse rate decreases less than that of the saturated pseudo-adiabat, i. e. $\Gamma = -\frac{dT}{dz} < \Gamma_s \cong 5$. A layer of an atmospheric profile is said to be *absolutely unstable* (or superadiabatic) if its lapse rate decreases more than that of the dry adiabat, i. e. $\Gamma = -\frac{dT}{dz} > \Gamma_d \cong 9.8$.

Static instability

A layer of an atmospheric profile is said to be *absolutely stable* if its lapse rate decreases less than that of the saturated pseudo-adiabat, i.e. $\Gamma =$ $-\frac{dT}{dz} < \Gamma_s \cong 5$. A layer of an atmospheric profile is said to be *absolutely* unstable (or superadiabatic) if its lapse rate decreases more than that of the dry adiabat, i.e. $\Gamma = -\frac{dT}{dz} > \Gamma_d \cong 9.8$. A layer of an atmospheric Static stability

profile is said to be conditionally stable if its lapse rate is in between 850 the dry and saturated adiabat, i.e. $\Gamma_s < \Gamma < \Gamma_d$. [hPa] Lifting the bottom of the 006 layer it will become UNSTABLE unstable if it is saturated. but will remain stable if it 22 follows a dry adiabat. 15 / 63 T [C]

Static instability is a characteristic of part (a layer) of an atmospheric profile, with respect to small displacements of its bottom, in that sense it is very different from the potential instability of the entire profile, that could need a large displacement of one of its low levels.

Static instability is a characteristic of part (a layer) of an atmospheric profile, with respect to small displacements of its bottom, in that sense it is very different from the potential instability of the entire profile, that could need a large displacement of one of its low levels. When a layer is absolutely stable, $\Gamma < \Gamma_s$, it means that $\frac{d\Theta_e}{dz} > 0$. It is even more true that $\frac{d\Theta}{dz} > 0$, hence it is possible to define the *Brunt-Väisälä frequency* $\mathbf{N} = \sqrt{\frac{\mathbf{g}}{\Theta} \frac{d\Theta}{dz}}$, that is very useful to study PBL, gravity waves...

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Static instability is a characteristic of part (a layer) of an atmospheric profile, with respect to small displacements of its bottom, in that sense it is very different from the potential instability of the entire profile, that could need a large displacement of one of its low levels. When a layer is absolutely stable, $\Gamma < \Gamma_s$, it means that $\frac{d\Theta_e}{dz} > 0$. It is even more true that $\frac{d\Theta}{dz} > 0$, hence it is possible to define the *Brunt-Väisälä* frequency $\mathbf{N} = \sqrt{\frac{\mathbf{g}}{\Theta} \frac{\mathrm{d}}{\mathrm{d}} \mathbf{z}}$, that is very useful to study PBL, gravity waves... When a layer is conditionally unstable, $\Gamma_s < \Gamma < \Gamma_d$, it means that $\frac{d\Theta_e}{dz} < 0$ but $\frac{d\Theta}{dz} > 0$, hence it is still possible to define the Brunt-Väisälä frequency. The conditional instability (i.e. $\frac{d\Theta_e}{dz} < 0$) does not guarantee that the bottom of the layer will have a LFC, but depends on its moisture.

Static instability is a characteristic of part (a layer) of an atmospheric profile, with respect to small displacements of its bottom, in that sense it is very different from the potential instability of the entire profile, that could need a large displacement of one of its low levels. When a layer is absolutely stable, $\Gamma < \Gamma_s$, it means that $\frac{d\Theta_e}{dz} > 0$. It is even more true that $\frac{d\Theta}{dz} > 0$, hence it is possible to define the *Brunt-Väisälä* frequency $N = \sqrt{\frac{g}{\Theta} \frac{d\Theta}{dz}}$, that is very useful to study PBL, gravity waves... When a layer is conditionally unstable, $\Gamma_s < \Gamma < \Gamma_d$, it means that $\frac{\mathrm{d}\Theta_e}{\mathrm{d}z}$ < 0 but $\frac{\mathrm{d}\Theta}{\mathrm{d}z}$ > 0, hence it is still possible to define the Brunt-Väisälä frequency. The conditional instability (i.e. $\frac{d\Theta_e}{dz} < 0$) does not guarantee that the bottom of the layer will have a LFC, but depends on its moisture. When a layer is absolutely unstable it will be lifted even by a very small perturbation (without needs of an external forcing), so that is the "classical" instability as defined in physics. $\Gamma > \Gamma_d$ means $\frac{d\Theta}{dz} < 0$ and it is no more possible to define the Brunt-Väisälä frequency

Section 3

Radiosoundings: skew-T and Thetaplot

3

Against homologation

The atmospheric profiles are usually not shown on a normal p vs. T (or z vs. T) diagram as seen until now, but are shown on specific thermodynamic diagrams. In the past many different diagrams were proposed: Neuhoff (1900), Tephigram (Shaw, 1922), Stüve (1927), Aerogram (Refsdal, 1935), Pastagram (Bellamy, 1945), skew-T (Herlofson, 1947)... Today, in 99.999% of cases it is used the skew-T diagram, but I will show you also the Theta-Plot diagram (Morgan, 1992), which I personally believe to be the most useful.

Against homologation

The atmospheric profiles are usually not shown on a normal p vs. T (or z vs. T) diagram as seen until now, but are shown on specific thermodynamic diagrams. In the past many different diagrams were proposed: Neuhoff (1900), Tephigram (Shaw, 1922), Stüve (1927), Aerogram (Refsdal, 1935), Pastagram (Bellamy, 1945), skew-T (Herlofson, 1947)... Today, in 99.999% of cases it is used the skew-T diagram, but I will show you also the Theta-Plot diagram (Morgan, 1992), which I personally believe to be the most useful.

In the approximation of *dry* air and *hydrostatic equilibrium* it is easy to derive the *hypsometric* or *thickness* equation:

$$\ln \frac{\mathbf{p}_2}{\mathbf{p}_1} = -\frac{\mathbf{g}}{\mathbf{R}_d \overline{\mathbf{T}(\mathbf{z})}} \cdot (\mathbf{z}_2 - \mathbf{z}_1) \tag{15}$$

Against homologation

The atmospheric profiles are usually not shown on a normal p vs. T (or z vs. T) diagram as seen until now, but are shown on specific thermodynamic diagrams. In the past many different diagrams were proposed: Neuhoff (1900), Tephigram (Shaw, 1922), Stüve (1927), Aerogram (Refsdal, 1935), Pastagram (Bellamy, 1945), skew-T (Herlofson, 1947)... Today, in 99.999% of cases it is used the skew-T diagram, but I will show you also the Theta-Plot diagram (Morgan, 1992), which I personally believe to be the most useful.

In the approximation of *dry* air and *hydrostatic equilibrium* it is easy to derive the *hypsometric* or *thickness* equation:

$$\ln \frac{\mathbf{p}_2}{\mathbf{p}_1} = -\frac{\mathbf{g}}{\mathbf{R}_d \,\overline{\mathbf{T}(\mathbf{z})}} \cdot (\mathbf{z}_2 - \mathbf{z}_1) \tag{15}$$

From this equation it is possible to see that the height z is approximately proportional to the opposite of the natural logarithm of pressure p. Hence, on the ordinate it will be shown $-\ln(p/1000)$.

On the skew-T diagram the abscissa is turned 45°, so that isotherms are no more vertical lines, but are skewed of 45 degree to the right.

イロト 不得 トイヨト イヨト

3

- On the skew-T diagram the abscissa is turned 45°, so that isotherms are no more vertical lines, but are skewed of 45 degree to the right.
- The dry adiabats (iso-⊖ lines) here are the orange lines, slanted to the left from surface upward. In the low levels they are almost straight.

イロト イポト イヨト イヨト

- On the skew-T diagram the abscissa is turned 45°, so that isotherms are no more vertical lines, but are skewed of 45 degree to the right.
- The dry adiabats (iso-⊖ lines) here are the orange lines, slanted to the left from surface upward. In the low levels they are almost straight.
- The saturated pseudo-adiabats (iso-⊖_e lines) are shown here as the green curves, going toward left from surface upward.

イロト イポト イヨト イヨト

- On the skew-T diagram the abscissa is turned 45°, so that isotherms are no more vertical lines, but are skewed of 45 degree to the right.
- The dry adiabats (iso-⊖ lines) here are the orange lines, slanted to the left from surface upward. In the low levels they are almost straight.
- The saturated pseudo-adiabats (iso-⊖_e lines) are shown here as the green curves, going toward left from surface upward.
- The iso-q lines are the dashed blue lines, going toward right from surface upward.

Skew-T graphical explanation

The atmosphere profile is drawn reporting at each pressure level T(p)and $T_d(p)$.

Usually also the horizontal-wind profile is shown on the right side.

э

A potentially unstable sounding shown on a Skew-T

28-jun-1998,12:00:00 Skew-t plot for rds16044 (28-Jun-1998,11:00:00).

21 / 63

-= 50 M/S 10 M/S

- = 5 M/S

A potentially unstable sounding shown on a Skew-T

28-jun-1998.12:00:00 Skew-t plot for rds16044 (28-Jun-1998.11:00:00).

If the mean air in the lowest levels (note the superadiabatic surface) is lifted along a dry adiabat until LCL and then along a saturated pseudo-adiabat, a LFC can be found, hence CAPE > 0. Note that it is needed some forcing to overtake the CIN.

イロト イポト イヨト イヨト

A potentially unstable sounding shown on a Skew-T

28-jun-1998,12:00:00 Skew-t plot for rds16044 (28-Jun-1998,11:00:00).

If the mean air in the lowest levels (note the superadiabatic surface) is lifted along a dry adiabat until LCL and then along a saturated pseudo-adiabat, a LFC can be found, hence CAPE > 0. Note that it is needed some forcing to overtake the CIN. The temperature difference between the lifted parcel and the environment at WINDS PROFILE p = 500 hPa is the Lifted = 5 M/S

< ロト < 同ト < ヨト < ヨト

 On the Thetaplot diagram the abscissa is Θ_e, so that saturated pseudo-adiabats (iso-Θ_e) are vertical lines.

イロト 不得 トイヨト イヨト

3

- On the Thetaplot diagram the abscissa is Θ_e, so that saturated pseudo-adiabats (iso-Θ_e) are vertical lines.
- The isotherms are no more straight lines, but are curves (white in this example) going to the right from surface upward.

イロト イポト イヨト イヨト

- On the Thetaplot diagram the abscissa is Θ_e, so that saturated pseudo-adiabats (iso-Θ_e) are vertical lines.
- The isotherms are no more straight lines, but are curves (white in this example) going to the right from surface upward.
- The dry adiabats (iso-⊖ lines) are the blue curves, going toward left from surface upward. At low temperatures they are almost vertical.

- On the Thetaplot diagram the abscissa is Θ_e, so that saturated pseudo-adiabats (iso-Θ_e) are vertical lines.
- The isotherms are no more straight lines, but are curves (white in this example) going to the right from surface upward.
- The dry adiabats (iso-⊖ lines) are the blue curves, going toward left from surface upward. At low temperatures they are almost vertical.
- The iso-q lines are the dashed green lines, going toward right from surface upward.

Theta-plot graphical explanation

On each level of a Theta-plot these 3 values are drawn: Θ_{ed} , Θ_e and Θ_{es} .

Theta-plot graphical explanation

On each level of a Theta-plot these 3 values are drawn: Θ_{ed}, Θ_{e} and Θ_{es} . This Udine sounding, launched at 11:00 UTC of 05/09/2013, has an inversion layer $(\mathrm{d}T/\mathrm{d}z < 0)$ at 800 hPa and also a layer where $\mathrm{d}\Theta_e/\mathrm{d}z < 0$ (between 900 and 850 hPa), but it is not *potentially* unstable (no LFC).

On Theta-plot is easy to identify where Θ_e is conserved

The "third" line of the Thetaplot shows Θ_e , that is one of the most *conserved* variables in atmosphere, since it is conserved even in "dry layers", like that between 1000 and $925 \, hPa \, (q=10g/kg!).$

On Theta-plot is easy to identify where Θ_e is conserved

The "third" line of the Thetaplot shows Θ_{e} , that is one of the most *conserved* variables in atmosphere, since it is conserved even in "dry layers", like that between 1000 and 925 hPa (q=10g/kg!). The small superadiabatic layer near surface can lead to overestimation of instability, if surface is taken as initial parcel. \sim

Vertical time-series of Θ_e observed by RDS every 6h

Vertical time-series of Θ_e observed by RDS every 6h

Equivalent Potential Temperatures on a Theta-plot

28-jun-1998,12:00:00 Theta plot (rds16044).

Operatively, the Theta-plot diagram is computed observing at different levels p, T and T_d , then deriving $q(p, T, T_d)$ and $q_{sat}(p, T)$ and lastly computing and drawing at each level $\Theta_{ed} = \Theta_e(p, T_d, q),$ $\Theta_e = \Theta_e(p, T, q)$ and $\Theta_{es} = \Theta_{e}(p, T, q_{sat}).$

イロト イポト イヨト イヨト

- 5 M/S

Equivalent Potential Temperatures on a Theta-plot

28-jun-1998,12:00:00 Theta plot (rds16044).

Operatively, the Theta-plot diagram is computed observing at different levels p, T and T_d , then deriving $q(p, T, T_d)$ and $q_{sat}(p, T)$ and lastly computing and drawing at each level $\Theta_{ed} = \Theta_{e}(p, T_{d}, q),$ $\Theta_e = \Theta_e(p, T, q)$ and $\Theta_{es} = \Theta_{e}(p, T, q_{sat}).$ Note that, for any given pressure level p, Θ_{es} depends only from T(p). イロト イポト イヨト イヨト

Temperatures on a Theta-plot

28-jun-1998,12:00:00 Theta plot (rds16044).

The vertical profiles of Θ_{ed} , Θ_e and Θ_{es} intersect on the isothermes T_d , T_w and T respectively, because of the correspondences seen before. Example shows temperatures at 850 hPa. $(\Theta_{es} - \Theta_{ed})$ resembles the dew-point depressure $(T - T_d)$: the more distant are these two lines. the more dry is that level.

イロト イポト イヨト イヨト

- 5 M/S

Temperatures on a Theta-plot

28-jun-1998,12:00:00 Theta plot (rds16044).

The vertical profiles of Θ_{ed} , Θ_e and Θ_{es} intersect on the isothermes T_d , T_w and T respectively, because of the correspondences seen before. Example shows temperatures at 850 hPa. $(\Theta_{es} - \Theta_{ed})$ resembles the dew-point depressure $(T - T_d)$: the more distant are these two lines. the more dry is that level. Note that on the skew-T it is not possible to read the value of $T_{W} \rightarrow A = A$

Mixing ratios on a Theta-plot

28-jun-1998,12:00:00 Theta plot (rds16044).

The vertical profiles of Θ_{ed} and Θ_{es} intersect on the iso-mixing ratio lines (q = const) q and q_{sat} , respectively.

Mixing ratios on a Theta-plot

28-jun-1998,12:00:00 Theta plot (rds16044).

The vertical profiles of Θ_{ed} and Θ_{es} intersect on the iso-mixing ratio lines (q = const) q and q_{sat} , respectively.

The sounding shown is the Udine RDS launched at 11:00 UTC of 28/06/1998. Note that soundings are launched before their nominal "time" because the ascension takes about 45 minutes.

소리가 소문가 소문가 소문가 ...

- 5 M/S

A potentially unstable sounding shown on a Theta-plot

28-jun-1998,12:00:00 Theta plot (rds16044). If the mean air in the

lowest levels (avoiding the surface superadiabatic overestimation) is lifted along a dry adiabat until LCL and then along a vertical saturated pseudo-adiabat, a LFC can be found, hence CAPE> 0.

イロト イポト イヨト イヨト

A potentially unstable sounding shown on a Theta-plot

28-jun-1998,12:00:00 Theta plot (rds16044). If the mean air in the

-- 5 M/S

lowest levels (avoiding the surface superadiabatic overestimation) is lifted along a dry adiabat until LCL and then along a vertical saturated pseudo-adiabat, a LFC can be found, hence CAPE > 0. Since Θ_e is conserved along the whole process, the LFC exists if and only if Θ_e of the initial parcel is higher then the lowest Θ_{es} in the mid-levels, i.e. MaxBuo> 0= + (= + =

Since Θ_e is conserved along the whole process, the Lifted Parcel Theory on a Thetaplot means simply to draw a vertical line starting from the initial parcel Θ_e , that fixes everything else.

(日) (同) (三) (三)

Since Θ_e is conserved along the whole process, the Lifted Parcel Theory on a Thetaplot means simply to draw a vertical line starting from the initial parcel Θ_{e} , that fixes everything else. In this case there is a first LFC*, followed by a *capping* layer, CAP. Specifically, it is an inversion, but in general it is sufficient to have a layer where $d\Theta_{es}/dz > 0$ and not also dT/dz > 0, because an increase of Θ_{es} with z can stop_the_rising_parcel.

Choosing another *initial* parcel means simply to start from a different Θ_e and to draw another vertical line. It is immediate to see how LFC and EL change and how much are reduced the CAPE energy and the MaxBuo.

イロト イポト イヨト イヨト

Choosing another *initial* parcel means simply to start from a different Θ_e and to draw another vertical line. It is immediate to see how LEC. and EL change and how much are reduced the CAPE energy and the MaxBuo. On the Thetaplot the *Most* Unstable Parcel (MUP) is simply identified as the level having the maximum Θ_{e} among all the low levels. The choice of the initial level determines everything about the whole adiabatic lifting.

A potentially stable sounding having $\mathrm{d}\Theta_e/\mathrm{d}z < 0$

If Θ_e is always lower than Θ_{es} then it is not possible to find a LFC, hence CAPE = 0 and MaxBuo< 0. It is better to have a variable defined even for stable soundings (like MaxBuo or LI) than a bounded variable like CAPE.

(日) (同) (三) (三)

A potentially stable sounding having $\mathrm{d}\Theta_e/\mathrm{d}z < 0$

If Θ_{ρ} is always lower than Θ_{es} then it is not possible to find a LFC. hence CAPE = 0and MaxBuo< 0. It is better to have a variable defined even for stable soundings (like MaxBuo or LI) than a bounded variable like CAPE. The fact that there are two layers with $d\Theta_e/dz < 0$ have no influences on the potential instability.

イロト イポト イヨト イヨト

 The fact that the identification of the initial parcel fixes its Θ_e value means that all the rest of the pseudo-adiabatic lifting is determined by that single value.

- The fact that the identification of the initial parcel fixes its Θ_e value means that all the rest of the pseudo-adiabatic lifting is determined by that single value.
- After that the -conserved- Θ_e value of the initial parcel is chosen, all its buoyancy and derived indices (LFC, EL, CAPE, CIN, MaxBuo, LI,...) will depend only by the Θ_{es} profile above it, hence by the environmental *temperature* alone, not by its *humidity* profile.

イロト イポト イヨト イヨト

- The fact that the identification of the initial parcel fixes its Θ_e value means that all the rest of the pseudo-adiabatic lifting is determined by that single value.
- After that the -conserved- Θ_e value of the initial parcel is chosen, all its buoyancy and derived indices (LFC, EL, CAPE, CIN, MaxBuo, LI,...) will depend only by the Θ_{es} profile above it, hence by the environmental *temperature* alone, not by its *humidity* profile.
- The environmental humidity is particularly important in the *lowest levels*, where the initial parcel is chosen, because the initial Θ_e value strongly depends on it, but it is not important (from the point of view of the parcel buoyancy) above the level where the initial parcel is taken.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- The fact that the identification of the initial parcel fixes its Θ_e value means that all the rest of the pseudo-adiabatic lifting is determined by that single value.
- After that the -conserved- Θ_e value of the initial parcel is chosen, all its buoyancy and derived indices (LFC, EL, CAPE, CIN, MaxBuo, LI,...) will depend only by the Θ_{es} profile above it, hence by the environmental *temperature* alone, not by its *humidity* profile.
- The environmental humidity is particularly important in the *lowest levels*, where the initial parcel is chosen, because the initial Θ_e value strongly depends on it, but it is not important (from the point of view of the parcel buoyancy) above the level where the initial parcel is taken.
- That is true when buoyancy is computed using the normal temperature. If the virtual correction is used, then there is a -very small- influence of the environmental humidity profile even above the initial parcel level.

1 The skew-T is widely used, so there are many software to compute it.

- **1** The skew-T is widely used, so there are many software to compute it.
- The area in the skew-T are proportional to the real energy, so the CAPE/CIN "areas" are perfectly proportional to their values. That is not true on the Theta-plot, but presently these values are computed via software's.

イロト 不得 トイヨト イヨト 二日

- **1** The skew-T is widely used, so there are many software to compute it.
- The area in the skew-T are proportional to the real energy, so the CAPE/CIN "areas" are perfectly proportional to their values. That is not true on the Theta-plot, but presently these values are computed via software's.
- The Theta-plot show also ⊖_e, that is probably the single most useful variable in meteorology, because it is conserved under many processes.

イロト 不得 トイヨト イヨト 二日

- **1** The skew-T is widely used, so there are many software to compute it.
- The area in the skew-T are proportional to the real energy, so the CAPE/CIN "areas" are perfectly proportional to their values. That is not true on the Theta-plot, but presently these values are computed via software's.
- The Theta-plot show also ⊖_e, that is probably the single most useful variable in meteorology, because it is conserved under many processes.
- On the Theta-plot it is very easy to identify if an initial parcel has a LFC (unstable sounding) or not, just lifting it along a vertical line.

- **1** The skew-T is widely used, so there are many software to compute it.
- The area in the skew-T are proportional to the real energy, so the CAPE/CIN "areas" are perfectly proportional to their values. That is not true on the Theta-plot, but presently these values are computed via software's.
- The Theta-plot show also ⊖_e, that is probably the single most useful variable in meteorology, because it is conserved under many processes.
- On the Theta-plot it is very easy to identify if an initial parcel has a LFC (unstable sounding) or not, just lifting it along a vertical line.
- So For this reason on the Theta-plot it is obvious to identify the Most Unstable Parcel, i. e. that having the maximum ⊖_e in the low levels. Instead, on the skew-T one have to apply the curved adiabat processes to many initial parcels and find the maximum CAPE.

- **1** The skew-T is widely used, so there are many software to compute it.
- The area in the skew-T are proportional to the real energy, so the CAPE/CIN "areas" are perfectly proportional to their values. That is not true on the Theta-plot, but presently these values are computed via software's.
- The Theta-plot show also ⊖_e, that is probably the single most useful variable in meteorology, because it is conserved under many processes.
- On the Theta-plot it is very easy to identify if an initial parcel has a LFC (unstable sounding) or not, just lifting it along a vertical line.
- For this reason on the Theta-plot it is obvious to identify the Most Unstable Parcel, i. e. that having the maximum ⊖_e in the low levels. Instead, on the skew-T one have to apply the curved adiabat processes to many initial parcels and find the maximum CAPE.
- The Theta-plot show also T_w and not only T and T_d .

Make your choice!

Section 4

Sounding-derived indices and their correlations

• A radiosounding is a very complex set of data describing the detailed thermodynamical and horizontal-wind structure of the atmospheric profile. For example, the Vaisala RS-92 sonde provides one observed level every one second. The nominal ascension velocity is about 4.4 m/s, so the troposphere is sampled in about 45 minutes (more than 2500 measured levels!), during which the horizontal winds can shift the sounding location of about 10-50 km.

- A radiosounding is a very complex set of data describing the detailed thermodynamical and horizontal-wind structure of the atmospheric profile. For example, the Vaisala RS-92 sonde provides one observed level every one second. The nominal ascension velocity is about 4.4 m/s, so the troposphere is sampled in about 45 minutes (more than 2500 measured levels!), during which the horizontal winds can shift the sounding location of about 10-50 km.
- All this information is condensed into the WMO TEMP format, that provides only *mandatory* levels (TTAA) and *significant* levels (TTBB) reducing the *vertical resolution* in troposphere to only ~ 50 levels.

- A radiosounding is a very complex set of data describing the detailed thermodynamical and horizontal-wind structure of the atmospheric profile. For example, the Vaisala RS-92 sonde provides one observed level every one second. The nominal ascension velocity is about 4.4 m/s, so the troposphere is sampled in about 45 minutes (more than 2500 measured levels!), during which the horizontal winds can shift the sounding location of about 10-50 km.
- All this information is condensed into the WMO TEMP format, that provides only *mandatory* levels (TTAA) and *significant* levels (TTBB) reducing the *vertical resolution* in troposphere to only ~ 50 levels.
- Since the information is still "too large", people have invented many "indices" to reduce even more this "redundancy". Each of this indices try to investigate a particular characteristic of the sounding.

- A radiosounding is a very complex set of data describing the detailed thermodynamical and horizontal-wind structure of the atmospheric profile. For example, the Vaisala RS-92 sonde provides one observed level every one second. The nominal ascension velocity is about 4.4 m/s, so the troposphere is sampled in about 45 minutes (more than 2500 measured levels!), during which the horizontal winds can shift the sounding location of about 10-50 km.
- All this information is condensed into the WMO TEMP format, that provides only *mandatory* levels (TTAA) and *significant* levels (TTBB) reducing the *vertical resolution* in troposphere to only ~ 50 levels.
- Since the information is still "too large", people have invented many "indices" to reduce even more this "redundancy". Each of this indices try to investigate a particular characteristic of the sounding.
- Manzato and Morgan (2003) and Manzato (2003) have presented the SOUND_ANALYS.PY software to compute ~ 50 indices from a high-vertical resolution sounding.

Comparing the raw data with the GTS-TEMP format

-											
2	015070	04_12_U	Idine_ori	ginal.txt - Bl	locco no	te					
File	Mod	ifica E	ormato	Visualizza	2						
	616	44	4604	1319	93	2015	0704	1100	32923862	RS92-SGP	
TI	ME HE	EIGHT	PRESS	т	RH	Td	Wdir	Wspd	Code		
	0	93	10110	310	44	174	179	38	TUDEV		4 8
	1	103	10099	304	45	171	178	38	뷰		9
	- 5	117	10084	207	40	168	177	39	11 H		
	4	122	10077	294	45	164	177	39	100		1604
	5	128	10071	291	45	160	176	40	100		
	6	133	10065	289	45	159	175	40	100		
	7	138	10060	288	46	159	175	41	100		PRE
	8 0	142	10055	28/	40	161	174	41	100		hI
	10	151	10045	286	47	163	173	41	100		
	11	155	10040	286	48	164	172	42	100		1011.
	12	160	10034	286	48	165	172	42	100		1000
	13	165	10028	285	48	166	171	42	100		925.
	14	171	10023	284	49	166	171	42	100		868.
	15	1/5	1001/	284	49	166	1/0	42	100		865.
	17	187	10004	283	49	166	169	42	100		850.
	18	194	9996	282	49	166	168	42	100		837.
	19	202	9987	281	50	167	168	41	100		809.
	20	209	9979	281	50	167	167	41	100		744
	21	216	9971	280	50	168	167	41	100		700.
	22	223	9964	280	51	168	16/	40	100		681
	54	235	9950	279	51	169	166	39	100		659.
	25	241	9943	278	51	169	165	39	100		624.
	26	247	9936	278	51	169	165	39	200		595.
	27	253	9930	277	52	169	165	38	200		573.
	28	259	9923	276	52	168	164	38	200		547
	30	200	9910	275	52	169	164	36	200		537.
	31	280	9900	275	52	169	163	36	200		509.
	32	286	9893	274	53	169	163	35	200		500.
	33	292	9887	274	53	169	163	35	200		498.
	34	297	9880	273	53	169	162	34	200		485.
	30	303	98/4	273	23	160	161	34	200		410
	37	315	9860	272	53	168	161	33	200		406.
	38	321	9854	271	53	168	160	32	200		400.
	39	327	9848	271	53	168	160	32	200		397.
	40	333	9841	270	54	169	159	31	200		384.
	41	338	9835	2/0	24	1/0	158	51	200		333.
	75	240	9029	270	55	175	157	20	200		326.
	44	355	9817	270	55	172	156	29	200		317.
	45	361	9810	269	55	172	155	29	200		300
	46	367	9803	269	55	171	154	28	200		293.
	47	373	9796	268	55	170	153	28	200		281.
	48	379	9790	267	55	170	151	27	200		280.
	30	300	9/83	200	22	166	140	26	200		252.
	51	395	9772	263	55	165	148	26	200		250.
	52	400	9767	263	55	165	147	25	200		247.
	53	405	9761	263	55	165	146	25	200		217

Weather.uwyo.edu/cgi-bin/sounding?region=europe&TYPE=TEXT%3ALIST&YEAR=2015&MON

16044 LIPD Udine Observations at 12Z 04 Jul 2015

PRES	HGHT	TEMP	DWPT	RELH	MIXR	DRCT	SKNT	THTA	THTE	THTV	
hPa	n	с	c		g/kg	deg	knot	ĸ	K	K	
1011.0	94	31.0	17.0	43	12.20	180	7	303.2	339.7	305.4	
1005.0	147	28.6	15.6	45	11.21	175	8	301.3	334.6	303.4	
1000.0	191	28.2	16.2	48	11.71	170	8	301.4	336.1	303.5	
925.0	876	21.6	15.6	69	12.19	165	8	301.4	337.5	303.6	
868.0	1425	17.2	12.3	73	10.46	297	3	302.3	333.6	304.2	
865.0	1454	17.6	11.6	68	10.01	304	2	303.1	333.1	304.9	
850.0	1604	16.8	9.8	63	9.02	340	1	303.7	331.0	305.4	
837.0	1735	16.2	8.2	59	8.21	344	3	304.4	329.4	305.9	
809.0	2025	17.2	2.2	37	5.57	352	7	308.5	326.0	309.5	
781.0	2323	15.2	-0.2	35	4.84	0	12	309.4	324.8	310.3	
744.0	2734	12.4	-3.6	33	3.96	4	16	310.7	323.5	311.5	
700.0	3241	8.6	-15.4	17	1,66	10	22	312.0	317.6	312.3	
681.0	3463	6.8	-17.6	16	1.42	10	24	312.5	317.4	312.8	
659.0	3728	4.8	-20.1	14	1.18	15	22	313.1	317.2	313.3	
624.0	4168	1.3	-24.4	13	0.85	0	14	314.1	317.1	314.2	
595.0	4552	-1.7	-28.1	11	0.64	15	18	314.9	317.1	315.0	
573.0	4856	-4.1	-31.1	10	0.50	3	20	315.4	317.3	315.6	
558.0	5064	-4.9	-40.5	- 4	0.20	355	22	316.9	317.7	316.9	
547.0	5220	-5.5	-47.6		0.10	10	23	318 0	318 4	318 0	
527.0	5265	-6.1	-54.1		0.05		22	219.0	219 2	219.0	
509.0	5701	-0.5	-55 0		0.04		20	221 0	221 1	221 0	
500.0	6920	-0.2	-56.9		0.04	č	10	221 6	221 0	221 6	
490.0	5951	-9.3	-52.2	ŝ	0.05	-	19	222 0	222 2	322.0	
495.0	6152	-11.1	-50.2		0.00	20	10	322.2	222 6	222.0	
433.0	2021	-10.0	-26.0	10	0.00			303.1	224 6	303.0	
410.0	7031	-10.9	-30.9		0.30			303.1	305.0	202.0	
410.0	7275	-20.0	-33.0	33	0.07	335	23	323.0	323.5	323.9	
406.0	7451	-22.5	-49.5	53	0.02	350		329.3	327.3	324.4	
400.0	7600	-23.1	-32.1		0.65		21	324.9	321.3	325.0	
397.0	7655	-23.5	-38.5	24	0.35		21	325.1	326.4	325.1	
304.0	/09/	-20.3	-40.3	23	0.30		21	325.0	327.0	325.9	
333.0	8909	-33.9	-42.9		0.26		21	327.6	328.6	327.6	
326.0	9057	-34.9	-47.9	25	0.15		21	328.2	328.8	328.2	
317.0	9251	-36.3	-43.3	48	0.26	0	21	328.9	329.9	328.9	
308.0	9450	-37.5	-53.5	17	0.09	0	21	329.9	330.3	329.9	
300.0	9630	-38.9	-53.9	19	0.08	0	21	330.4	330.8	330.4	
293.0	9792	-40.3	-58.3	13	0.05	2	23	330.7	330.9	330.7	
281.0	10077	-42.5	-67.5	5	0.02	5	26	331.5	331.6	331.5	
280.0	10101	-42.7	-67.2	5	0.02	S	26	331.6	331.6	331.6	
252.0	10807	-48.3	-59.3	27	0.05	10	14	333.4	333.6	333.4	
250.0	10860	-48.7	-58.7	30	0.06	10	14	333.5	333.8	333.5	
247.0	10939	-49.1	-59.1	30	0.05	7	14	334.1	334.3	334.1	
227.0	11486	-52.9	-66.9	17	0.02	343	12	336.4	336.5	336.4	

 $_{41}$ The first \sim 50 levels in a raw sounding (left) or TEMP format (right).

From a sounding it is possible to derive three types of information:

From a sounding it is possible to derive three types of information:

Environmental indices (that do not need to apply the Lifted Parcel Theory). Very commonly used are: K-index, Precipitable Water (PWE), mean relative humidity of a layer, mean wind of a layer, Shear, Helicity...

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

From a sounding it is possible to derive three types of information:

- Environmental indices (that do not need to apply the Lifted Parcel Theory). Very commonly used are: K-index, Precipitable Water (PWE), mean relative humidity of a layer, mean wind of a layer, Shear, Helicity...
- Indices that are computed based on the Lifted Parcel Theory and hence strongly depends on the choice of the initial parcel (initial Θ_e) and on the details observed in the low-levels. Very commonly used *instability indices* are: LCL height or temperature, Showalter or Lifted Index, CAPE, CIN, updraft velocity, MaxBuo...

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

From a sounding it is possible to derive three types of information:

- Environmental indices (that do not need to apply the Lifted Parcel Theory). Very commonly used are: K-index, Precipitable Water (PWE), mean relative humidity of a layer, mean wind of a layer, Shear, Helicity...
- Indices that are computed based on the Lifted Parcel Theory and hence strongly depends on the choice of the initial parcel (initial Θ_e) and on the details observed in the low-levels. Very commonly used *instability indices* are: LCL height or temperature, Showalter or Lifted Index, CAPE, CIN, updraft velocity, MaxBuo...
- Mixed indices, which typically uses instability indices together with wind information. Very commonly used are: Energy-Helicity Index (EHI), SWEAT, SWISS...

We will see only a few of them!

K-Index and its 1995-2002 distribution above Udine

One of the oldest indices is the K-Index (George, 1960). The dot line is the sub-sample for soundings associated with convective activity in the FVG plain in the 6 hours after launch (1995-2002). Values above 25 are often associated with lightning occurrences.

K-Index and its 1995-2002 distribution above Udine

One of the oldest indices is the K-Index (George, 1960). The dot line is the sub-sample for soundings associated with convective activity in the FVG plain in the 6 hours after launch (1995-2002). Values above 25 are often associated with lightning occurrences.

$$KI = T_{@850} - T_{@500} + T_{d @850} - (T_{@700} - T_{d @700}).$$
(16)

KI is defined using only environmental temperature and dew-point depressure on three mandatory levels. Even if very simple, it is also correlated to rainfall intensity.

• *Showalter* (1953) was the first to use the difference of temperature between the lifted parcel and the environmental air at 500 hPa:

ShowI =
$$T_{e \ @500} - T_{p \ @500}$$
 [K] (17)

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト … 間

Showalter used as initial parcel the mean air at 850 hPa.

• *Showalter* (1953) was the first to use the difference of temperature between the lifted parcel and the environmental air at 500 hPa:

ShowI =
$$T_{e @500} - T_{p @500}$$
 [K] (17)

イロト イポト イヨト イヨト

Showalter used as initial parcel the mean air at 850 hPa.

• Galway (1956) defined the *Lifted Index* (LI) in the same way, but using as initial parcel the mean air of the lowest 500 m.

• *Showalter* (1953) was the first to use the difference of temperature between the lifted parcel and the environmental air at 500 hPa:

ShowI =
$$T_{e \, @500} - T_{\rho \, @500}$$
 [K] (17)

Showalter used as initial parcel the mean air at 850 hPa.

- Galway (1956) defined the *Lifted Index* (LI) in the same way, but using as initial parcel the mean air of the lowest 500 m.
- Nowadays the most used "lifted index" is the one using as initial parcel the Most Unstable Parcel (maxΘ_e), called DT500 in Manzato (2003) or MULI by many authors.

• *Showalter* (1953) was the first to use the difference of temperature between the lifted parcel and the environmental air at 500 hPa:

ShowI =
$$T_{e \, @500} - T_{p \, @500}$$
 [K] (17)

Showalter used as initial parcel the mean air at 850 hPa.

- Galway (1956) defined the *Lifted Index* (LI) in the same way, but using as initial parcel the mean air of the lowest 500 m.
- Nowadays the most used "lifted index" is the one using as initial parcel the Most Unstable Parcel (maxΘ_e), called DT500 in Manzato (2003) or MULI by many authors.
- Manzato (2003) introduced also the temperature difference between environment and lifted parcel evaluated at a fixed *parcel temperature* (chosen -15°C) instead than to a fixed pressure level (500 hPa). It was called Difference of Temperature at the Core Level (DTC).

1995-2002 distribution of the Udine MULI

The dot distribution is the sub-sample for soundings associated with convective activity in the FVG plain in the 6 hours after launch (1995-2002). *Low* (< 2°C) or *negative* values are associated with lightning occurrences.

1995-2002 distribution of the Udine MULI

The dot distribution is the sub-sample for soundings associated with convective activity in the FVG plain in the 6 hours after launch (1995-2002). *Low* (< 2°C) or *negative* values are associated with lightning occurrences.

At least in Europe, there are a number of evidences where the Most Unstable Lifted Index gives better *statistical performances* when forecasting convection (lightnings or hail or storm occurrences) than CAPE, which is a bounded variable. References includes Manzato (2003), 45 Groenemeijer and van Delden (2007), Kunz (2007)...
1995-2002 distribution of the Udine CAPE and CIN

Frequency distribution for CIN (5800 cases, 1540 active cases)

Differently from the "two-level" instability indices (which includes also MaxBuo), CAPE and CIN are *integrated* measures of buoyancy (positive for CAPE and negative for CIN). Note that SOUND_ANALYS.PY computes the maximum UpDr velocity using only the CAPE integrated up to the parcel level of -15° C instead of EL.

< ロト < 同ト < ヨト < ヨト

1995-2002 distribution of the Udine CAPE and CIN

Frequency distribution for CIN (5800 cases, 1540 active cases)

Differently from the "two-level" instability indices (which includes also MaxBuo), CAPE and CIN are *integrated* measures of buoyancy (positive for CAPE and negative for CIN). Note that SOUND_ANALYS.PY computes the maximum UpDr velocity using only the CAPE integrated up to the parcel level of -15° C instead of EL. The CAPE distribution of convective cases is not very different... Also values of CIN > -100 J/kgare associated with convective events in the FVG plain.

Maximum Buoyancy and Downdraft Potential

Storms are more likely when MaxBuo > -2K. Morgan and Tuttle (1984) defined MaxBuo but also other indices. like the difference between the maximum Θ_{es} in the low levels and the minimum Θ_{e} in the mid levels, called *Downdraft Potential*. DownPot= $Max(\Theta_{es}|_{low}) - Min(\Theta_{e}|_{mid}).$

Maximum Buoyancy and Downdraft Potential

Storms are more likely when MaxBuo > -2K. Morgan and Tuttle (1984) defined MaxBuo but also other indices. like the difference between the maximum Θ_{es} in the low levels and the minimum Θ_{e} in the mid levels. called *Downdraft Potential*. DownPot=

 $Max(\Theta_{es}|_{low}) - Min(\Theta_{e}|_{mid}).$

Physical meaning: the coolest and more dry air in the middle troposphere $[Min(\Theta_e|_{mid})]$ is supposed to saturate by rainfall evaporation and hence is brought down along a saturated pseudo-adiabat (Θ_e is conserved). The maximum thermal contrast (generating the outflow wind) will happen at the low level where Θ_{es} is maxima. It measures the *negative buoyancy*.

Wind hodograph and shear

48 / 63

Wind hodograph and shear

The *hodograph* is the plot of the two horizontal wind components u and v. The hodograph path length is called Shear.

$$\text{Shear} = \frac{\int_{z_0}^{z_N} \left\| \frac{\partial \vec{W}}{\partial z} \right\| \cdot \mathrm{d}z}{z_N - z_0} \cong \frac{\sum_{1}^{N} \sqrt{(u_n - u_{n-1})^2 + (v_n - v_{n-1})^2}}{z_N - z_0} \quad \text{(18)}$$

• Shear is usually computed from surface up to 6 or from surface up to troposphere (about 12 km).

(日) (四) (三) (三) (三)

- Shear is usually computed from surface up to 6 or from surface up to troposphere (about 12 km).
- Very often the shear is confused with the Bulk Shear, that is simply the magnitude of the vectorial difference between two winds at two different levels: $BS = \sqrt{(u_2 u_1)^2 + (v_2 v_1)^2}$.

イロト イロト イヨト イヨト 三日

- Shear is usually computed from surface up to 6 or from surface up to troposphere (about 12 km).
- Very often the shear is confused with the Bulk Shear, that is simply the magnitude of the vectorial difference between two winds at two different levels: $BS = \sqrt{(u_2 u_1)^2 + (v_2 v_1)^2}$.
- The most used levels for the BS are: sfc vs. 1 km, sfc vs. 850 hPa, sfc. vs. 3 km, sfc. vs. 5 km, 1 km vs. 3 km, 1 km vs. 6 km...

イロト 不得下 イヨト イヨト 二日

- Shear is usually computed from surface up to 6 or from surface up to troposphere (about 12 km).
- Very often the shear is confused with the Bulk Shear, that is simply the magnitude of the vectorial difference between two winds at two different levels: $BS = \sqrt{(u_2 u_1)^2 + (v_2 v_1)^2}$.
- The most used levels for the BS are: sfc vs. 1 km, sfc vs. 850 hPa, sfc. vs. 3 km, sfc. vs. 5 km, 1 km vs. 3 km, 1 km vs. 6 km...
- For example, the Bulk Richardson Number is defined as 2 times CAPE divided by the square of the bulk shear between 6 km and 500 m: BRN= $2\frac{\text{CAPE}}{S_{BRl}^2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- Shear is usually computed from surface up to 6 or from surface up to troposphere (about 12 km).
- Very often the shear is confused with the Bulk Shear, that is simply the magnitude of the vectorial difference between two winds at two different levels: $BS = \sqrt{(u_2 u_1)^2 + (v_2 v_1)^2}$.
- The most used levels for the BS are: sfc vs. 1 km, sfc vs. 850 hPa, sfc. vs. 3 km, sfc. vs. 5 km, 1 km vs. 3 km, 1 km vs. 6 km...
- For example, the Bulk Richardson Number is defined as 2 times CAPE divided by the square of the bulk shear between 6 km and 500 m: BRN= $2\frac{\text{CAPE}}{S_{\text{RPC}}^2}$.
- In very complex orography terrains, like northern Italy, it is not obvious that shear will have the same importance in governing storm organization (single cell, multicell, squall lines) as it has been found in the US's plains, because of the complex interaction between winds and orography...

Storm–Relative Helicity

Storm–Relative Helicity

The storm-relative helicity (Davies-Jones 1990) is the area between the storm-velocity vector, V_s , and the hodograph. Usually integrated up to 3 km. $SRH = -\int_{z_0}^{z_N} \vec{k} \cdot (\vec{W} - \vec{v_s}) \times \frac{\partial \vec{W}}{\partial z} \cdot dz \simeq -\sum_{1}^{N} (u_n - u_s)(v_n - v_{n-1}) - (u_n - u_{n-1})(v_n - v_s)$ (19) Should be useful for supercells and tornadoes.

Water Vapor Flux in the lowest 3 km

In FVG (Adriatic Sea on the South and Alps on the North) we have found to be very useful the *water vapor flux* in the lowest 3 km:

$$VFlux = \frac{1}{N} \cdot \sum_{z_0}^{z_N} \rho_{v \, n} \cdot v_n$$
(20)

イロト イポト イヨト イヨト

Water Vapor Flux in the lowest 3 km

Physical meaning: strong moist winds blowing from South (VFlux< 0) brings the "convective fuel" against the orographic barrier, producing convection triggered by orographic lifting or strong precipitating systems (especially in autumn). Useful in particular for heavy rainfall forecast.

Example of $\operatorname{SOUND_ANALYS}.PY$ output in a HTML page

SOUND_ANALYSIS RESULTS:

1 ear	Month	Day	Hour				
1998	06	28	12				
Udine Sounding (WMO code 16044, managed by the Italian Aeronautica Militare)							

	_		
Index [5 : 95 percentils unit on all cases April-November 1995-2007]	т	Tv	Tve
MUP ThetaE [296:336 K] Thetae	337.2	337.2	337.2
MUP Mixing Ratio [2:2:12.5 g/kg] Mix	12.4	12.4	12.4
MUP height [228:2434 m]	271	271	271
Convective Available Potential Energy [0.923 Jkg]	1124.2	1243.1	1220.4
Convective Inhibition [-1385:-0.4 Mg]	-46.4	-14.7	-25.0
Tropopause height [9298:13611 m]	12514	12514	12514
Cloud top [2279:11687 m]	11506	11464	11857
Lev. of Free Convection [925:4136 m]	2932	2080	2608
Cloud base height [648:3553 m]	1469	1469	1469
Cloud base temperature [-12.2:15.3 C] Thase	14.5	14.4	14.4
Boundary Layer Top (313:4197m) PBL	752	752	752
Melting level [1720:4338 m] MEL	4402	4587	4312
Wet Bulb Zero [921:3590 m] WBZ	3421	3421	3421
Max Updraft velocity [0:29.3 m/s] UnDr	29.7	32.6	26.0
Max Hail diameter [0:4.8 cm] HD	5.0	6.0	3.8
Precip. Wat. Env. [9.1:36.4 mm] PWE	34.5	34.2	34.2
Precip. Wat. Cloud [0:44.5 mm] PWC	44.3	44.1	44,4
ufc-250hPa Low Rel. Humidity [38:91 %] LRH	64.1	64.1	64.1
efc-500hPa Medium Rel. Humidity [31:88 %] MRH	58.7	58.7	58.7
500-300hPa High Rel. Humshity [11:71 %] HRH	22.5	22.5	22.5
CAP diff_theta_es [1.3:17.8 C] CAP	1.4	1.4	1.4
Low buo, accel. [-44:31cm/s2] b PBL	-47.0	-47.0	-47.0
Downdraft Potential [3.5:52.4 K] DownPot	47.6	47.6	47.6
Maximum Buoyancy [-9.8:9.6 K] MaxBuo	10.33	10.33	10.33
C (1			

LI	-3.22	-3.74	-2.01			
Diff. Temp. 500hPa [-3.3:9.4 C] DT500	-3.3	-3.81	-2.11			
Diff. Temp. at -15 [-3.5:7.0 C] DTC	-2.89	-3.27	-2.76			
Showalter Index [-1.0:11.7 C] ShowI	0.06	-0.28	0.8			
Stabil: Wind Shear Index Switz.) [-4.3:15.9.] SWISS	-3.2	-3.7	-2.0			
Severe WEAth. Threat [7.4:186] SWEAT	129.5	129.5	129.5			
KI	28.7	28.7	28.7			
Boyden Index [91.6:98.9] BOY	95.4	95.4	95.4			
Vapour Flux [+41:20 gm-2s-1] VFlux	-31.7	-31.7	-31.7			
U Low Lev. Wind [-2.7:7.6 m/s] LLWu	0.5	0.5	0.5			
V Low Lev. Wind [-4.0:3.9 m/s] LLWv	-3.1	-3.1	-3.1			
<u>U Med. Lev. Wind</u> [-10.3:5.7 m/a] MLWu	-7.6	-7.6	-7.6			
V Med. Lev. Wind [-13.2:4.3 m/s] MLWv	-3.1	-3.1	-3.1			
U High Lev. Wind [-31.3:9.9 m/s] HLWu	-23.9	-23.9	-23.9			
V High Lev. Wind [-18.6:24.4 m/s] HLWv	-4.2	-4.2	-4.2			
Low Level Jet (>15m/s) Depth [0:2776 m] LLJD	387	387	387			
High Level Jet (>30m/s) Depth [0:4781 m] HLJD	0	0	0			
Bulk Richardson Numb. [0:86] BRI	34.1	37.5	36.8			
Bulk Shear sft-850hPa [1.2:11.5 m/s] BS850	1.7	1.7	1.7			
<u>Shear * E-3</u> [4.0:14 s-1] Shear	4.6	4.6	4.6			
Shear * E-3 [5.0:17 s-1] Shear 3	0.0	0.0	0.0			
Helicity [-55:127 J/kg] Hel	50.1	50.1	50.1			
Storm Rel. Helicity [-18:187 J/kg] Rel Hel	65.2	65.3	65.3			
Energy-Hel. [-0.004:0.298 m4/s4] EHI	0.46	0.51	0.5			
Radiosende vertical vel. [3:78:5:53 m/s] VV	4.46	4.46	4.46			
Stand. dev. vertical vel. [0.25:0.97 m/s] VVstd	0.39	0.39	0.39			
Sounding Analysis results						

Just an example of the many indices computed by Sound_Analys.PY for the Udine 1998/06/28 12 UTC sounding. The three methods "T", "T_v" and T_{vc} are explained in Manzato and Morgan (2003).

医脊髓下的 医下颌下的 医

52 / 63

Matrix of inter-correlations among sounding-derived indices

Manzato JAMC 2012 has studied the correlations among 52 indices derived from 1992–2009 00, 06, 12 and 18 UTC Udine soundings.

These indices can be seen as a non-linear reduction of 3D basic atmosphere variables $(p, T, RH, \Theta_e, wind$ at many levels) into a set of intercorrelated parameters. Correlation Matrix of all the predictors (1992-2009)

53 / 63

3 groups of indices highly inter-correlated (R \geq 0.80)

Indices related to the most unstable parcel, like its equivalent potential temperature (Θ_e), its mixing ratio (Mix) and the height where its ascent temperature becomes 0 °C (MEL), or related to other environmental characteristics, like the height where the atmospheric wet bulb temperature becomes 0 °C (WBZ) and the precipitable water integrated along the entire atmospheric column (PWE).

イロト 不得下 イヨト イヨト 二日

3 groups of indices highly inter-correlated (R \geq 0.80)

- Indices related to the most unstable parcel, like its equivalent potential temperature (Θ_e), its mixing ratio (Mix) and the height where its ascent temperature becomes 0°C (MEL), or related to other environmental characteristics, like the height where the atmospheric wet bulb temperature becomes 0°C (WBZ) and the precipitable water integrated along the entire atmospheric column (PWE).
- Indices of "two-levels" potential instability such as Lifted Index (Galway 1956), Showalter Index (Showalter 1953), DT500 and DTC (Manzato 2003), i.e. the "lifted index family". Also the Maximum Buoyancy (Morgan and Tuttle 1984, Manzato and Morgan 2003,) is very well related to three of these indices.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

3 groups of indices highly inter-correlated (R \geq 0.80)

- Indices related to the most unstable parcel, like its equivalent potential temperature (Θ_e), its mixing ratio (Mix) and the height where its ascent temperature becomes 0°C (MEL), or related to other environmental characteristics, like the height where the atmospheric wet bulb temperature becomes 0°C (WBZ) and the precipitable water integrated along the entire atmospheric column (PWE).
- Indices of "two-levels" potential instability such as Lifted Index (Galway 1956), Showalter Index (Showalter 1953), DT500 and DTC (Manzato 2003), i.e. the "lifted index family". Also the Maximum Buoyancy (Morgan and Tuttle 1984, Manzato and Morgan 2003,) is very well related to three of these indices.
- Indices of "integrated" potential instability, i. e. maximum updraft velocity (UpDr), hail diameter (HD), CAPE and precipitable water integrated between LFC and the equilibrium level (PWC). MaxBuo is also well correlated with three of these indices.

Section 5

Forecasting meteo events with sounding-derived indices

The simplest way to use indices is setting a threshold

Here you can see a Thetaplot +hodograph +index table made by Arturo Pucillo (OSMER) in GrADS.

-99,-99,-99,-99

イロト イポト イヨト イヨト

10 m/s 50 m/s

MEL [m] = 3821

LI [C] = -1.38

PWE [mm] = 29.8

MLWu [m/s] = 1.9[m/s] = -2.5

 $BS850 \Pi = 1$ Shear3 [a-1] = 5.1

BRI [1] = 1.32.9

[2] = 58.7

VFlux [gm-2a-1] = -10.4

[m/s] = 4.4HLWv.

Rei Hei [J/kū] = 15.6

-99,-99,-99,-99

10 m/s 50 m/s

 $[J/k_q] = 598.6$ UpDr [m/s] = 23.5

CIN. [J/km] = -57 CAPE

The simplest way to use indices is setting a threshold

Here you can see a Thetaplot +hodograph +index table made by Arturo Pucillo (OSMER) in GrADS. Note the red-green colors when a statistical threshold (found maximizing the **Pierce Skill** Score) is exceeded. < 口 > < 同 > → Ξ →

• Instead of using one or more indices dichotomized with a *"magic"* threshold, it is much more useful to apply a multivariate analysis, in the multispace of more indices (*joint* probability).

- Instead of using one or more indices dichotomized with a *"magic"* threshold, it is much more useful to apply a multivariate analysis, in the multispace of more indices (*joint* probability).
- The simplest way to do it is to apply a Linear Discriminant Analysis (LDA), finding a condition like $a_1X_1 + a_2X_2 + ... + a_NX_N \leq const$.

イロト 不得 トイヨト イヨト 二日

- Instead of using one or more indices dichotomized with a *"magic"* threshold, it is much more useful to apply a multivariate analysis, in the multispace of more indices (*joint* probability).
- The simplest way to do it is to apply a Linear Discriminant Analysis (LDA), finding a condition like $a_1X_1 + a_2X_2 + ... + a_NX_N \leq const$.
- Since the instability indices (candidate predictors) are usually too many and since they are often correlated among them, it is mandatory to implement a input selection algorithm, like stepwise selection (forward or backward) or brute-force exhaustive search of a limited number of inputs (or others), in order to reduce noise in the statistical model.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

- Instead of using one or more indices dichotomized with a *"magic"* threshold, it is much more useful to apply a multivariate analysis, in the multispace of more indices (*joint* probability).
- The simplest way to do it is to apply a Linear Discriminant Analysis (LDA), finding a condition like $a_1X_1 + a_2X_2 + ... + a_NX_N \leq const$.
- Since the instability indices (candidate predictors) are usually too many and since they are often correlated among them, it is mandatory to implement a input selection algorithm, like stepwise selection (forward or backward) or brute-force exhaustive search of a limited number of inputs (or others), in order to reduce noise in the statistical model.
- When a complex statistical method is applied, like one with many predictors or non-linear models (neural networks), it is mandatory to avoid the *overfitting*. A good way is to develop the model fitting a *trainig* set and choosing the model that optimize the *validation* set. Lastly, an independent *test* sample should be used?

• For any forecasting problem it should be clarified if it is a classification problem (forecasting among a few class categories, e.g. binary events) or a regression problem (forecasting the value of a continuous variable), because the statistical models applied are different and also the forecast verification techniques are different (e.g. contingency table vs. Taylor diagram).

イロト 不得下 イヨト イヨト 二日

- For any forecasting problem it should be clarified if it is a classification problem (forecasting among a few class categories, e.g. binary events) or a regression problem (forecasting the value of a continuous variable), because the statistical models applied are different and also the forecast verification techniques are different (e.g. contingency table vs. Taylor diagram).
- When simple linear methods are used, a pre-processing of inputs is not always needed, but when non-linear methods are applied (maybe using a random initial choice of parameters) it is much better to pre-process the candidate predictors to make their domains more similar.

- For any forecasting problem it should be clarified if it is a classification problem (forecasting among a few class categories, e.g. binary events) or a regression problem (forecasting the value of a continuous variable), because the statistical models applied are different and also the forecast verification techniques are different (e.g. contingency table vs. Taylor diagram).
- When simple linear methods are used, a pre-processing of inputs is not always needed, but when non-linear methods are applied (maybe using a random initial choice of parameters) it is much better to pre-process the candidate predictors to make their domains more similar.
- For example, for regression problems, it is a commonly to standardize each variable, subtracting the mean value and dividing for the standard deviation.

- For any forecasting problem it should be clarified if it is a classification problem (forecasting among a few class categories, e.g. binary events) or a regression problem (forecasting the value of a continuous variable), because the statistical models applied are different and also the forecast verification techniques are different (e.g. contingency table vs. Taylor diagram).
- When simple linear methods are used, a pre-processing of inputs is not always needed, but when non-linear methods are applied (maybe using a random initial choice of parameters) it is much better to pre-process the candidate predictors to make their domains more similar.
- For example, for regression problems, it is a commonly to standardize each variable, subtracting the mean value and dividing for the standard deviation.
- For the classification problem, we suggest to transform each variable in its empirical posterior probability of event occurrence, as explained in Manzato (2005).

Section 6

Conclusions

"Pazzo è bene da catene, Chi fastidio mai si dà Per saper quel che sarà..." He is a raving madman who ever takes the trouble to know what the future holds...

from the first act of "Sant'Alessio" (1631) by Stefano Landi (1587–1639), text by Giulio Rospigliosi (1600–1669, also known as Pope Clemente IX).

• Think to "point of view" of water vapor, in particular to the adiabatic processes on the saturation diagram.

• Think to "point of view" of water vapor, in particular to the adiabatic processes on the saturation diagram.

Think in terms of equivalent potential temperature, Θ_e, that is a conserved variable and...try to use the Thetaplot diagram.

- Think to "point of view" of water vapor, in particular to the adiabatic processes on the saturation diagram.
- Think in terms of equivalent potential temperature, Θ_e, that is a conserved variable and...try to use the Thetaplot diagram.
- Remember that potentially instability is a characteristic of an atmosphere profile with respect to large displacements, while static (and conditional) instability is a characteristic of an atmosphere layer with respect to relatively small displacements.

- Think to "point of view" of water vapor, in particular to the adiabatic processes on the saturation diagram.
- Think in terms of equivalent potential temperature, Θ_e, that is a conserved variable and...try to use the Thetaplot diagram.
- Remember that potentially instability is a characteristic of an atmosphere profile with respect to large displacements, while static (and conditional) instability is a characteristic of an atmosphere layer with respect to relatively small displacements.

 Reflect on the importance of the choice if the initial parcel, that determine the full adiabatic process (initial parcel Θ_e).

Conclusions

- Think to "point of view" of water vapor, in particular to the adiabatic processes on the saturation diagram.
- Think in terms of equivalent potential temperature, Θ_e, that is a conserved variable and... try to use the Thetaplot diagram.
- Remember that potentially instability is a characteristic of an atmosphere profile with respect to large displacements, while static (and conditional) instability is a characteristic of an atmosphere layer with respect to relatively small displacements.
- Reflect on the importance of the choice if the initial parcel, that determine the full adiabatic process (initial parcel Θ_e).
- Consider the old Lifted Index before CAPE and compute the MaxBuo.

Conclusions

- Think to "point of view" of water vapor, in particular to the adiabatic processes on the saturation diagram.
- Think in terms of equivalent potential temperature, Θ_e, that is a conserved variable and...try to use the Thetaplot diagram.
- Remember that potentially instability is a characteristic of an atmosphere profile with respect to large displacements, while static (and conditional) instability is a characteristic of an atmosphere layer with respect to relatively small displacements.
- Reflect on the importance of the choice if the initial parcel, that determine the full adiabatic process (initial parcel Θ_e).
- Consider the old Lifted Index before CAPE and compute the MaxBuo.
- Try always a multivariate approach because more indices are better then a few and be careful to avoid overfitting in your verification process.

For info: agostino.manzato@meteo.fvg.it

Thanks!

References 1/3

- Bolton, D., 1980. The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046–1053.
- Corbet, J. M., Mueller, C., Burghart, C., Gould, K., and Granger, G., 1994. ZEB: Software for Integration, Display and Management of Diverse Environmental Datasets, *Bull AMS*, **75**, 783–792.
- Oavies-Jones, R., D. Burgess and M. Foster, 1990. Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, Canada, AMS, 50-60.
- Ooswell, C. A., III and E. Rasmussen, 1994. The effect of Neglecting the Virtual Temperature Correction on CAPE Calculations, *Wea. Forecasting*, 9, 625–629.
- Semanuel, K. A., 1994: Atmospheric Convection, Oxford University press., 580 pp.
- Feudale, L. and A. Manzato, 2014: Cloud-to-Ground Lightning Distribution and its Relationship with Orography and anthropogenic emissions in the Po Valley. JAMC, 53, 2651–2670.
- Galway, J.G., 1956. The lifted index as a predictor of latent instability, Bull. AMS, 37, 528–529.
- 6 George, J.J., 1960. Weather Forecasting for Aeronautics. Academic Press, 673 pp.
- Groenemeijer and van Delden, 2007: Sounding-derived parameters associated with large hail and tornadoes in the Netherlands Atmospheric research, volume 83, 473-487.
- Haklander, A. J., and A. van Delden, 2003: Thunderstorm predictors and their forecast skill for the Netherlands. Atmos. Res., 67-68, 273–299.
- Huntrieser, H., Schiesser, H. H., W. Schmid, and A. Waldvogel, 1997: Comparison of Traditional and Newly Developed Thunderstorm Indices for Switzerland. Wea: Social Forecasting 12, 108–125.

61 / 63

62 / 63

References 2/3

- Kunz, M., 2007: The skill of convective parameters and indices to predict isolated and severe thunderstorms, Nat. Hazards Earth Syst. Sci., 7, 327-342,
- Manzato, A., 2003: A climatology of instability indices derived from Friuli Venezia Giulia soundings, using three different methods. Atmos. Res., 67–68, 417–454.
- 4 -----, 2003: Considerazioni sul profilo verticale dell'atmosfera, Udine University internal report (in italian), 56 pp.
- 10 _____, 2005: The use of sounding derived indices for a neural network short-term thunderstorm forecast. Wea. Forecasting, 20, 896–917.
- 10 ——, 2007 a: Sounding-derived indices for neural network based short-term thunderstorm and rainfall forecasts. Atmos. Res., 83, 336-348.
- 1148–1154.
 Wea. Forecasting, 22, 1148–1154.
- Image: Book and Control of Management and Second Second
- 19 ——, 2012: Hail in NE Italy: Climatology and Bivariate Analysis with Sounding-Derived Indices. J. Appl. Meteor. Climatol., 51, 449-467.
- 20 ——, 2013: Hail in NE Italy: A neural network ensemble forecast using sounding-derived indices, Weather and Forecasting, 28, 3-28.
- 2 ——, and G. M. Morgan, 2003: Evaluating the sounding instability with the Lifted Parcel Theory. Atmos. Res., 67–68, 455–473.
- Moncrieff, M. W., and J. S. A. Green, 1972. The propagation of steady convective overturning in shear, *Quart. J. Roy. Meteor. Soc.*, 98, 336–352.
- Morgan, G. M. Jr, 1992. ThetaPlot, an Equivalent Potential Temperature Diagram Meteorol. Atmos. Phys., 47, 259–265.

References 3/3

- Morgan, G. M. Jr., and J. Tuttle, 1984. Some experimental techniques for the study of the evolution of atmospheric thermodynamic instability. Paper presented at the Second International Conference on Hailstorms and Hail Suppression, Sofia, Bulgaria (Proceedings), Bulgarian Hydrometeorological Service, 192â196.
- Paluch, I. R., 1979. The Entrainment Mechanism in Colorado Cumuli, Journ. of Atmos. Sci., 36, 2467–2478.
- Rasmussen, E. N. and D. O. Blanchard, 1998. A baseline climatology of sounding-derived supercell and tornado forecast parameters, Wea. Forecasting, 13, 1148–1164.

イロト イポト イヨト イヨト

3

Showalter, A. K., 1953. A stability index for thunderstorm forecasting, Bull. AMS, 34, 250–252.