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Outline

© Basic variables and adiabatic processes.

@ Atmosphere (in)stability.

© Radiosoundings: skew-T and Thetaplot.

@ Sounding-derived indices and their correlations.

@ Intro to forecastmg meteo events W|th sounding-derived indices.
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Atmospheric instability and sounding-derived indices

Section 1

Basic variables and adiabatic processes
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Dry air and water vapor mixture

@ Air is a mixture made by a variable part (0-4%) of H2O (mass 18)
plus a fixed proportion of other gases: 78% N» (mass 28), 21% of O,
(mass 32), 0.9% of Ar, 0.03% of COa,...
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Dry air and water vapor mixture

@ Air is a mixture made by a variable part (0-4%) of H2O (mass 18)
plus a fixed proportion of other gases: 78% N» (mass 28), 21% of O,
(mass 32), 0.9% of Ar, 0.03% of CO»,...

@ For this reason meteorologists define “air” as a mix of 2 ideal gases:
1) : pa = paRaT, with Ry = 286.99 J/(kg K);

2) :e = p,R,T, with R, = Ry4/0.62198 = 461.4 J/(kg K).
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Dry air and water vapor mixture

@ Air is a mixture made by a variable part (0-4%) of H2O (mass 18)
plus a fixed proportion of other gases: 78% N» (mass 28), 21% of O,
(mass 32), 0.9% of Ar, 0.03% of COx,...

@ For this reason meteorologists define “air” as a mix of 2 ideal gases:

1) : pa = paRaT, with Ry = 286.99 J/(kg K);

2) ce = p,R,T, with R, = Ry/0.62198 = 461.4 J/(kgK).
o Air is p = pq + € air is p = pa + pv = pa(1 + q),

where q = py/pg = 0.622& is the water vapor . One

can define virtual temperature T, = T(1 + 0.6q) so that p = pRq4T,.
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Dry air and water vapor mixture

463

@ Air is a mixture made by a variable part (0-4%) of H,O (mass 18)

plus a fixed proportion of other gases: 78% N» (mass 28), 21% of O,
(mass 32), 0.9% of Ar, 0.03% of CO,,...
For this reason meteorologists define “air” as a mix of 2 ideal gases:

1) : pa = paRaT, with Ry = 286.99 J/(kg K);

2) ce = p,R,T, with R, = Ry/0.62198 = 461.4 J/(kgK).
Air is p = pg + €; air is p=pa + pv = pa(1+q),

where q = py/pg = 0.622& is the water vapor . One

can define virtual temperature T, = T(1 4 0.6q) so that p = pRqT,.
The maximum quantity of water vapor (before condensation) depends
only by air , via the saturation vapor pressure, simplified

by: €sat(T) = 6.11 - eT 2%, is RH =100 - .
In NE ltaly g varies between a minimum of 1g/kg to a maximum of
about 22 g/kg. Note that HyO is lighter than dry air (molecular mass

of 18 vs. 29): the more moist air, the less dense it'is.
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Saturation diagram: the point of view of water

Water vapour pressure [hPa]
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The dew—point
temperature, Ty, is
defined implicitly on the
esat(T) curve as the
temperature when air
will become saturated
conserving its initial
partial pressure e, so
that e = esat(T4q)-
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Saturation diagram: the point of view of water

The saturated vapour pressure and the dry adiabatic process
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The dew—point
temperature, Ty, is
defined implicitly on the
esat(T) curve as the
temperature when air
will become saturated
conserving its initial
partial pressure e, so
that e = egat(T4q).

When air is lifted adiabatically, it foIIow a dry adiabat until saturation at
Lifted Condensation Level temperature, Tycy, then it follow a wet adiabat.
Air mixture is defined by 4 variables: p, T, p plus a variable for humidity,
like g or RH or T4 or dew-point depressure (T — Ty4).=.
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The point of view of the air parcel

Adiabatic lifting of a parcel and some variable definitions
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When the air parcel is
lifted adiabatically it
follows a dry adiabat
until LCL. If from LCL
the parcel is sink
pseudo-adiabatically
along a wet adiabat
(adding moisture) then
it reaches the initial
level at the wet—bulb
temperature, T,,.
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The point of view of the air parcel

Adabaticfting ofa prcel and some vrabl defritions When the air parcel is
lifted adiabatically it
follows a dry adiabat
until LCL. If from LCL
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If, after LCL, it is lifted along a wet pseudo-adiabat until all moisture is
removed (g = 0) and then it is sink down at the initial level through a dry
adiabat, it reaches the , Te. “Equivalent” because it
considers the warming due to the latent heat of vapor ‘condensation.
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Referring everything to a standard level
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Adiabatic lifting of a parcel and some variable definitions

700
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To make things more
comparable, temperatures
can be referred to the
standard level (1000 hPa).
Bringing the initial parcel
there along a dry adiabat
defines the potential
temperature, ©. The dry
adiabat used to define T,
intersects the 1000 hPa
level at the equivalent
potential temperature,©e.
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Referring everything to a standard level

To make things more
comparable, temperatures
can be referred to the
standard level (1000 hPa).
Bringing the initial parcel
there along a dry adiabat
defines the potential
temperature, ©. The dry
adiabat used to define T,
‘ intersects the 1000 hPa

‘ : : > | level at the equivalent
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o potential temperature,©e.
Adding moisture till saturation at the initial level [q = gu: = 0.622 ece(T)/(p — esar(T))]

and doing the same process done for ©. defines the saturated equivalent
potential temperature, Oes.

Adiabatic lifting of a parcel and some variable definitions
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Referring everything to a standard level

Adiabatic lifting of a parcel and some variable definitions
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©Oes.
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To make things more
comparable, temperatures
can be referred to the
standard level (1000 hPa).
Bringing the initial parcel
there along a dry adiabat
defines the

, ©. The dry
adiabat used to define T,
intersects the 1000 hPa
level at the

Oe.

Adding moisture till saturation at the initial level [q = gu: = 0.622 ece(T)/(p — esar(T))]
and doing the same process done for ©. defines the

, Oes. Cooling the initial air until saturation
conserving e (i.e. starting saturated from Ty4) and doing the same process

7 defines the

[ @ed



Atmospheric instability and sounding-derived indices

3 transformations: potential, equivalent and wet-bulb

@ Temperatures at the air parcel level: T4, 7, and T.
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3 transformations: potential, equivalent and wet-bulb

@ Temperatures at the air parcel level: T4, 7, and T.
@ Bringing air to the 1000 hPa level:
e using a dry adiabatic process (potential transformation): © (or ©,...).
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3 transformations: potential, equivalent and wet-bulb

@ Temperatures at the air parcel level: 74, 7, and 7.
@ Bringing air to the 1000 hPa level:
e using a dry adiabatic process (potential transformation): © (or ©,...).
e using a saturated pseudo-adiabatic lifting until g = 0, followed by a dry
adiabatic sinking (equivalent transformation):

eed - ee(pa Tda Q), ee(pv Ta q) and @es - ee(pa T, qsat)
(note that © depends only by p and T!), where (Bolton 1980):

q(1+0.81q)(% 72.54)

1000)0,2854 (1—0.28q)
-e

ee(p) T) q) = T : (7
p
) 2840 +55 @)
,e) =
ket 3.5 In(T) — In(e) — 4.805
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3 transformations: potential, equivalent and wet-bulb

@ Temperatures at the air parcel level: , and
@ Bringing air to the 1000 hPa level:
e using a dry adiabatic process (potential transformation): © (or ©,...).

e using a saturated pseudo-adiabatic lifting until g = 0, followed by a dry
adiabatic sinking (equivalent transformation):

- ee(pa Tda Q), (pv Ta q) and = ee(pa T, qsat)
(note that © depends only by p and T!), where (Bolton 1980):

q(1+0.81q)(% 72.54)

1000)0.2854 (1—0.28q)
-e

ee(Pa T) q) = T : (7
p
2840

Ta(T2€) = ST — ne) — 805 @

e using a saturated pseudo-adiabat sinking (wet-bulb transformation):
, and , used mainly by French people.
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3 transformations: potential, equivalent and wet-bulb

@ Temperatures at the air parcel level: , and
@ Bringing air to the 1000 hPa level:
e using a dry adiabatic process (potential transformation): © (or ©,...).

e using a saturated pseudo-adiabatic lifting until g = 0, followed by a dry
adiabatic sinking (equivalent transformation):

- ee(pa Tda Q), (pv Ta q) and = ee(pa T, qsat)
(note that © depends only by p and T!), where (Bolton 1980):

q(1+0.81q)(% 72.54)

1000)0.2854 (1—0.28q)
-e

ee(Pa T) q) = T : (7
p
2840

T, T,e)= + 55 2
wa(T>e) = 37 In(T) — In(e) — 4.805 @

e using a saturated pseudo-adiabat sinking (wet-bulb transformation):

, and , used mainly by French people.
There are 3 correspondences: Ty <> Ocg < Ouyd,
Ty <> Oc <> 0,
T < Ops <> Ops.
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Dry, moist and pseudo-saturated adiabatic processes

@ Dry adiabatic: air is considered dry (neglecting the vapor enthalpy)

No saturation (q = qo = constant) and ¢, = ¢,y = 7/2Ry (dry air is biatomic) 3)
1000\ Rd/pd 1000\ 2/7
Invariant : ©(T, p) = (T) - (—) =(T)- (—) (4)
p p
dT g °
LapseRate: — — =Ty = — 2~ 9.76 °C/km (5)
dz Cpd
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Dry, moist and pseudo-saturated adiabatic processes

@ Dry adiabatic: air is considered dry (neglecting the vapor enthalpy)

No saturation (q = qo = constant) and ¢p = cpg = 7/2Ry (dry air is biatomic) 3)
1000\ Rd/ pd 1000\ 2/7
Invariant : ©(T,p) = (T) - ( — =(T) - ( — (4)
p P
dT g o
LapseRate: — — =T3g = — ~9.76 °C/km (5)
dz Cpd

@ Moist adiabatic: air never saturated but vapor is considered

No saturation (q = qo = constant) and mcp = mycpq + Mycpy = my7/2Ry + my4R, (vapor is triatomic) (6

1000 (Rg+Rvd0)/(cpq-+py o) 10001 3 gL Rado
) a4-+Rv a0/ (€pd +cpv 0 TR R
Invariant : ©papch(T, P, 90) = (T) - (T) =(7T)- <T) 7Rv/Rao (7

The moist adiabat (Paluch 1979) approximates the dry adiabat as much as 8/7 = 1, that is why it is often neglected.
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Dry, moist and pseudo-saturated adiabatic processes

@ Dry adiabatic: air is considered dry (neglecting the vapor enthalpy)

No saturation (q = qo = constant) and ¢p = cpg = 7/2Ry (dry air is biatomic) 3)
1000\ Rd/ pd 1000\ 2/7
Invariant : ©(T,p) = (T) - ( — =(T) - ( — (4)
p p
dT g o
LapseRate: — — =T3g = — ~9.76 °C/km (5)
dz Cpd

@ Moist adiabatic: air never saturated but vapor is considered

No saturation (q = qo = constant) and mcp = mycpq + Mycpy = my7/2Ry + my4R, (vapor is triatomic) (6

1000 (Rg+Rvd0)/(cpq-+py o) 1000 3 gL Rad
) 4+Ry40)/(pa+Cpv a0 TR R
Invariant : ©papch(T, P, 90) = (T) - (7) =(7T)- (T) 7Rv/Rao (7

The moist adiabat (Paluch 1979) approximates the dry adiabat as much as 8/7 = 1, that is why it is often neglected.

@ Saturated (or wet) pseudo-adiabatic: air is always saturated and
condensate falls out of the lifted parcel

saturation q = gsat(p, T), and ¢, jig = 0 andcpjce = 0 (8)

Invariant : ©(T, p, q) = equation(1) 9)
dT

LapseRate : — i =Ts(p,q) = 5+ 8°C/km (low troposphere <+ 500 hPa) (10)
z

o/ Itiscalled “pseudo” because it is not reversible (rainfall).
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Section 2

Atmosphere (in)stability

pressure (hPa]
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Atmospheric instability and sounding-derived indices

The Lifted Parcel Theory

It is based on the following assumptions:
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The Lifted Parcel Theory

It is based on the following assumptions:

@ the initial parcel rises along completely dry adiabat until it becomes
saturated, and afterward it rises along a saturated pseudo-adiabat.
“Adiabatically” means without exchange of heat between parcel and
environment;
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The Lifted Parcel Theory

It is based on the following assumptions:

@ the initial parcel rises along completely dry adiabat until it becomes
saturated, and afterward it rises along a saturated pseudo-adiabat.
“Adiabatically” means without exchange of heat between parcel and
environment;

@ the environment is in , e % = —gp and the
parcel pressure is always equal to the environment pressure at the
same height (no pressure perturbations);
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The Lifted Parcel Theory

It is based on the following assumptions:

@ the initial parcel rises along completely dry adiabat until it becomes
saturated, and afterward it rises along a saturated pseudo-adiabat.
“Adiabatically” means without exchange of heat between parcel and
environment;

@ the environment is in , e % = —gp and the
parcel pressure is always equal to the environment pressure at the
same height (no pressure perturbations);

@ the rising parcel does not mix with the environment (no entrainment
and no dilution);
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The Lifted Parcel Theory

It is based on the following assumptions:
@ the initial parcel rises along completely dry adiabat until it becomes

11 /63

saturated, and afterward it rises along a saturated pseudo-adiabat.
“Adiabatically” means without exchange of heat between parcel and
environment;

the environment is in , e % = —gp and the
parcel pressure is always equal to the environment pressure at the
same height (no pressure perturbations);

the rising parcel does not mix with the environment (no entrainment
and no dilution);

in the simplest version (conserving ©.), during the saturated
pseudo-adiabat the condensed water falls out, so that there is no
condensate load and no latent heath of freezing.

P.S. Otherwise one could parametrize the liquid water—to—ice transition and consider the load of condensed water
(which reduce buoyancy) and the latent heat of freezing (which increase buoyancy). In such a case O is not conserved

and buoyancy is computed using the virtual-cloud temperature of the parcel, T, (see Manzato and Morgan 2003).
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Parcel buoyancy

During its inviscid lifting the parcel will experience the following vertical

acceleration (called ):
dw 1 dp 1 pe(z) — pp(2)
Bz)=—=—"—-——-g=—:(—gpe)—g=g——1—~—— (11
=) dt pp dz Pp (~ee) pp(2) (1

where w(z) is the parcel vertical velocity, p, and p. are the parcel and
environment density respectively. The parcel will continue to rise if it is
less dense than the surrounding environment.
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Parcel buoyancy

During its inviscid lifting the parcel will experience the following vertical

acceleration (called ):
dw 1 dp 1 pe(z) — pp(2)
Bz)=—=—"—-——-g=—:(—gpe)—g=g——1—~—— (11
=) dt pp dz Pp (~ee) pp(2) (1

where w(z) is the parcel vertical velocity, p, and p. are the parcel and
environment density respectively. The parcel will continue to rise if it is
less dense than the surrounding environment.Approximating the air as dry,
then pp = ppg = p/(Ra - Tp) and pe = peg = p/(Rq - Te), so that:
Tp(z) — Te(2)
B(z) ~g- - 12
(2) T.02) (12)
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Parcel buoyancy

During its inviscid lifting the parcel will experience the following vertical

acceleration (called ):
dw 1 dp 1 pe(z) — pp(2)
Bz)=—=—"—-——-g=—:(—gpe)—g=g——1—~—— (11
=) dt pp dz Pp (~ee) pp(2) (1

where w(z) is the parcel vertical velocity, p, and p. are the parcel and
environment density respectively. The parcel will continue to rise if it is
less dense than the surrounding environment.Approximating the air as dry,
then pp = ppg = p/(Ra - Tp) and pe = peg = p/(Rq - Te), so that:

B(Z) o g- TP(Z) — Te(z)

Te(z)
Instead, if one would consider also the vapor contribution, then he can
replace the normal temperatures with the virtual temperatures (called the
“virtual correction”), but then he should also conserve © p,y,cp instead of
the simpler potential temperature © during the "moist” adiabat...In both

.» Gases, during the saturated pseudo-adiabat it is conserved ©,.

(12)
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The vertical profile of a parcel buoyancy and its integral

altitude z [m]
6000
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Different buoyancy evaluations for the same sounding

L
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specific buoyancy force B [m/sn2]

025

Taking a small part of
environment as initial
parcel and applying the
Lifted Parcel Theory, it
may happen that the
parcel will become
buoyant [i.e. B(z) > 0],
from its Level of Free
Convection, LFC, to its
Equilibrium Level, EL.
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The vertical profile of a parcel buoyancy and its integral

altitude z [m]
6000

Different buoyancy evaluations for the same sounding

e

T T T T T T
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specific buoyancy force B [m/sn2]

T
025

Taking a small part of
environment as initial
parcel and applying the
Lifted Parcel Theory, it
may happen that the
parcel will become
buoyant [i.e. B(z) > 0],
from its

, LFC, to its

, EL.

Since B(z) = 9% = w - 9% integrating B(z) along the vertical profile one
obtains a squared vertical velocity, i.e. a kinetic energy. The
, CAPE, is obtained integrating the buoyancy

13 / 63

LFC

. ZgL
from LFC to EL: CAPE:/ B(z) - dz = 1/2v/? (13)
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Potential instability

Starting from an initial level zy of an atmospheric profile, in case that the
lifted air becomes more dense than the environment, one can think that an

external agent will provide the energy ( ) needed to —eventually—
reach its LFC. This energy is the , CIN:

ZLFC
cm:/ B(z) - dz <0 (14)

0
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Potential instability

Starting from an initial level zy of an atmospheric profile, in case that the
lifted air becomes more dense than the environment, one can think that an

external agent will provide the energy ( ) needed to —eventually—
reach its LFC. This energy is the , CIN:
ZLFC
CIN= / B(z)-dz<0 (14)
29

If an atmospheric profile has at least a parcel in the low levels for which it
is possible to find a LFC then the profile is said to be
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Potential instability

Starting from an initial level zy of an atmospheric profile, in case that the
lifted air becomes more dense than the environment, one can think that an

external agent will provide the energy ( ) needed to —eventually—
reach its LFC. This energy is the , CIN:
ZLFC
CIN= / B(z)-dz<0 (14)
29

If an atmospheric profile has at least a parcel in the low levels for which it
is possible to find a LFC then the profile is said to be

Potential instability is a characteristic of the whole profile, with respect to
very large displacement of one of his low levels, because LFC could be
much higher than the initial level z.
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Potential instability

Starting from an initial level zy of an atmospheric profile, in case that the
lifted air becomes more dense than the environment, one can think that an

external agent will provide the energy ( ) needed to —eventually—
reach its LFC. This energy is the , CIN:
ZLFC
CIN= / B(z)-dz<0 (14)
29

If an atmospheric profile has at least a parcel in the low levels for which it

is possible to find a LFC then the profile is said to be

Potential instability is a characteristic of the whole profile, with respect to

very large displacement of one of his low levels, because LFC could be

much higher than the initial level z.

The condition that there is an initial level for which it is possible to find a

LFC is equivalent to say that there is an initial parcel having CAPE> 0.

As we will see on the Thetaplot diagram, it is equivalent to say that the

atmospheric profile has a low-level ©¢|jon = ©c(2p) which is higher then a
1 mid-level ©¢s|miq, i.e. = Ocliow — Oes|mid > 0.



Atmospheric instability and sounding-derived indices

Static instability

A layer of an atmospheric profile is said to be absolutely stable if its lapse
rate decreases less than that of the saturated pseudo-adiabat, i.e. [ =
4L <T, =5

“dz s —

15 / 63



MeTeon.FVG
_ Atmospheric instability and sounding-derived indices

Static instability

A layer of an atmospheric profile is said to be if its lapse
rate decreases less than that of the saturated pseudo-adiabat, i.e. [ =
'%Z < Ts 2 5. A layer of an atmospheric profile is said to be

(or superadiabatic) if its lapse rate decreases more than that of
the dry adiabat, i.e. [ =-94L >, >098.
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Static instability

A layer of an atmospheric profile is said to be if its lapse
rate decreases less than that of the saturated pseudo-adiabat, i.e. [ =
—%Z < Ts 2 5. A layer of an atmospheric profile is said to be

(or superadiabatic) if its lapse rate decreases more than that of
the dry adiabat, i.e. [ =-94L >, >098.
A layer of an atmospheric N—
profile is said to be

if its

lapse rate is in between
the dry and saturated
adiabat, i.e. s < < Ty.
Lifting the bottom of the
layer it will become | B
unstable if it is saturated,
but will remain stable if it

follows a dry adiabat. J : B2 5
15 / 63 TIQ)
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Atmospheric instability and sounding-derived indices

Potential vs. static instability

Static instability is a characteristic of part (a layer) of an atmospheric
profile, with respect to displacements of its bottom, in that sense it
is very different from the potential instability of the entire profile, that
could need a displacement of one of its low levels.
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Potential vs. static instability

Static instability is a characteristic of part (a layer) of an atmospheric

profile, with respect to displacements of its bottom, in that sense it
is very different from the potential instability of the entire profile, that
could need a displacement of one of its low levels.

When a layer is absolutely stable, I < I, it means that % > 0. It is even
more true that % > 0, hence it is possible to define the

N= %%—?, that is very useful to study PBL, gravity waves. ..
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Potential vs. static instability

Static instability is a characteristic of part (a layer) of an atmospheric
profile, with respect to displacements of its bottom, in that sense it
is very different from the potential instability of the entire profile, that
could need a displacement of one of its low levels.

When a layer is absolutely stable, I < I, it means that d—ee > 0. It is even
more true that d@ > 0, hence it is possible to define the

N= g((ii?, that is very useful to study PBL, gravity waves. ..

When a layer is conditionally unstable, I's < T < Iy, it means that

dee < 0 but de > 0, hence it is still possible to define the Brunt-Vaisala
frequency. The condltlonal instability (i.e. dd% <0)

that the bottom of the layer will have a LFC, but depends on its moisture.
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Potential vs. static instability

Static instability is a characteristic of part (a layer) of an atmospheric

profile, with respect to displacements of its bottom, in that sense it
is very different from the potential instability of the entire profile, that
could need a displacement of one of its low levels.

When a layer is absolutely stable, I < I, it means that d—ee > 0. It is even
more true that d@ > 0, hence it is possible to define the

_ gd@
N= O dz’

When a layer is conditionally unstable, I'c < T < Iy, it means that

d@e < 0 but de > 0, hence it is still possible to define the Brunt-Vaisala

frequency. The condltlonal instability (i.e. dd% <0)

that the bottom of the layer will have a LFC, but depends on its moisture.

When a layer is absolutely unstable it will be lifted even by a very small
(without needs of an external forcing), so that is the

“classical” instability as defined in physics. I > 'y means % <0anditis

no more possible to define the Brunt-Vaisala frequency:
16 / 63

that is very useful to study PBL, gravity waves. ..



Section 3

Atmospheric instability and sounding-derived indices

Radiosoundings: skew-T and Thetaplot
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Against homologation

The atmospheric profiles are usually not shown on a normal p vs. T (or z
vs. T) diagram as seen until now, but are shown on specific
thermodynamic diagrams. In the past many different diagrams were
proposed: Neuhoff (1900), Tephigram (Shaw, 1922), Stiive (1927),
Aerogram (Refsdal, 1935), Pastagram (Bellamy, 1945), skew—T
(Herlofson, 1947). .. Today, in 99.999% of cases it is used the

diagram, but | will show you also the diagram (Morgan, 1992),
which | personally believe to be the most useful.
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Against homologation

The atmospheric profiles are usually not shown on a normal p vs. T (or z
vs. T) diagram as seen until now, but are shown on specific
thermodynamic diagrams. In the past many different diagrams were
proposed: Neuhoff (1900), Tephigram (Shaw, 1922), Stiive (1927),
Aerogram (Refsdal, 1935), Pastagram (Bellamy, 1945), skew—T
(Herlofson, 1947). .. Today, in 99.999% of cases it is used the

diagram, but | will show you also the diagram (Morgan, 1992),
which | personally believe to be the most useful.

In the approximation of dry air and hydrostatic equilibrium it is easy to

derive the or thickness equation:
P2 g
n——= — . 22 _ Zl 15
P1 Rd T(Z) ( ) ( )

From this equation it is possible to see that the height z is approximately
proportional to the opposite of the natural logarithm of pressure p. Hence,
on the ordinate it will be shown —In(p/1000).
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Atmospheric instability and soundin

A Skew-T chart

T diagram the abscissa

is turned 45°, so that isotherms are

no more vertical lines, but are
skewed of 45 degree to the right.
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Atmospheric instability and sounding-derived indices

@ On the skew-T diagram the abscissa
is turned 45°, so that isotherms are
no more vertical lines, but are
skewed of 45 degree to the right.
"o The dry adiabats (is0-© lines) here
2 are the orange lines, slanted to the
left from surface upward. In the low
levels they are almost straight.




Atmospheric instability and sounding-derived indices

A Skew

-T chart

X0

N

@ On the skew-T diagram the abscissa
is turned 45°, so that isotherms are
no more vertical lines, but are
skewed of 45 degree to the right.
The dry adiabats (iso-© lines) here
are the orange lines, slanted to the
left from surface upward. In the low
levels they are almost straight.

The saturated pseudo-adiabats
(iso-©. lines) are shown here as the
green curves, going toward left from
surface upward.
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A Skew-T chart
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On the skew-T diagram the abscissa
is turned 45°, so that isotherms are
no more vertical lines, but are
skewed of 45 degree to the right.

The dry adiabats (iso-© lines) here

are the orange lines, slanted to the

left from surface upward. In the low
levels they are almost straight.

The saturated pseudo-adiabats
(is0-©. lines) are shown here as the
green curves, going toward left from
surface upward.

The iso-g lines are the dashed blue
lines, going toward right from
surface upward.
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Skew-T graphical explanation
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The atmosphere
profile is drawn
reporting at each
pressure level T(p)
and Ty4(p).

Usually also the
horizontal-wind
profile is shown on the
right side.
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Atmospheric instability and sounding-derived indices

A potentially unstable sounding shown on a Skew-T

28-jun-1998,12:00:00 Skew-t plot for rds16044 (28-Jun-1998,11:00:00).
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A potentially unstable sounding shown on a Skew-T

28-jun-1998,12:00:00 Skew~t plot for rds16044 (28-Jun~1998,11:00:00). If the mean air in the
lowest levels (note the
superadiabatic surface) is
lifted along a dry adiabat
until LCL and then along a
saturated pseudo-adiabat, a
LFC can be found, hence
CAPE> 0. Note that it is
needed some forcing to
overtake the CIN.
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A potentially unstable sounding shown on a Skew-T

28-jun-1998,12:00:00 Skew~t plot for rds16044 (28-Jun~1998,11:00:00). If the mean air in the
lowest levels (note the
superadiabatic surface) is
lifted along a dry adiabat
until LCL and then along a
saturated pseudo-adiabat, a
LFC can be found, hence
CAPE> 0. Note that it is
needed some forcing to
overtake the CIN.
) e The temperature difference
/\ ' § between the lifted parcel
. / j \ /( and the environment at
o == c% p = 500 hPa is the [ ifted

N Index (Galway 1956).
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A Theta—plot chart (made by the NCAR “Zebra" software)

@ On the Thetaplot diagram the
abscissa is ©,, so that saturated
pseudo-adiabats ( ) are
vertical lines.
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A Theta—plot chart (made by the NCAR “Zebra" software)

@ On the Thetaplot diagram the
abscissa is ©,, so that saturated
pseudo-adiabats ( ) are
vertical lines.

@ The are no more straight
lines, but are curves (white in this
example) going to the right from
surface upward.
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Atmospheric instability and sounding-derived indices

A Theta—plot chart (made by the NCAR “Zebra" software)

A
270

290 310 330 350 370 390

Equivalent Potential Temperature (K)

@ On the Thetaplot diagram the

abscissa is ©,, so that saturated
pseudo-adiabats ( ) are
vertical lines.

The are no more straight
lines, but are curves (white in this
example) going to the right from
surface upward.

The dry adiabats ( lines) are
the blue curves, going toward left
from surface upward. At low
temperatures they are almost
vertical.
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A Theta—plot chart (made by the NCAR “Zebra" software)

@ On the Thetaplot diagram the
abscissa is ©,, so that saturated
pseudo-adiabats ( ) are
vertical lines.

@ The are no more straight
lines, but are curves (white in this
example) going to the right from
surface upward.

@ The dry adiabats ( lines) are
the blue curves, going toward left
from surface upward. At low
temperatures they are almost
vertical.

@ The lines are the dashed
green lines, going toward right from
surface upward.




instability and sounding-derived indices

5-sep-2013,11:00:00 Theta plot (rds16044). On each level of a
zp Theta-plot these 3
values are drawn:

Oy, Oe and
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Atmospheric instability and sounding-derived indices

Theta-plot graphical explanation

5-sep-2013,11:00:00 Theta plot (rds16044). On each level of a

z b | Theta-plot these 3
values are drawn:
Oy, Oe and
This Udine sounding,
launched at
11:00 UTC of
05/09/2013, has an

layer

(dT/dz <0) at
NArar , 800 hPa and also a

< %5%; S e Bl |ayer where

o 16:1412:108 6 4 2 0 2
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] ‘s‘qtur‘éted adiabats|

N ye ‘ d©./dz < 0 (between

R e e e « : 900 and 850 hPa), but
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Atmospheric instability and sounding-derived indices

On Theta-plot is easy to identify where ©, is conserved

The “third” line of
the Thetaplot shows
©e, that is one of the
most conserved
variables in
atmosphere, since it is
conserved even in
“dry layers”, like that
between 1000 and
925 hPa (g=10g/kg!).

5-sep-2013,11:00:00 Theta plot (rds16044).
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Atmospheric instability and sounding-derived indices

On Theta-plot is easy to identify where ©, is conserved

The “third” line of
the Thetaplot shows
©e, that is one of the
most conserved
variables in
atmosphere, since it is
conserved even in
“dry layers”, like that
between 1000 and
925 hPa (g=10g/kg!).
AN , The small

T R | 7S s superadiabatic layer

' / N S, T SN ncar surface can lead

5-sep-2013,11:00:00 Theta plot (rds16044).
z p
600

-16-14-12-10-8 6 -4 2 0 2

a-

‘gﬂ:ur‘a‘t‘ed‘adiabét's =

oLV - &%, % to overestimation of
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Vertical time-series of ©, observed by RDS every 6h

7-aug-2002,12:00:00 Contour plot of rds16044. XYWind:tc-sndwinds. Contour plot of rds16044. XY @e (fl”ed)
Graph:th-grid. XY Graph:pads.0. XY Graph:pads.1. XV Graph:pads. XY Graph:pads.4. .
- " gradients
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Atmospheric instability and sounding-derived indices

Vertical time-series of ©, observed by RDS every 6h

7-aug-2002,12:00:00 Contour plot of rds16044. XYWind:tc-sndwinds. Contour plot of rds16044. XY @e (fl”ed)
Graph:th-grid. XY Graph:pads.0. XY Graph:pads.1. XV Graph:pads. XY Graph:pads.4. .

g . - : A gradients
track very

well the

P

changes, e.g.
fronts.

Note CAPE,
CIN and LFC
(+).
Observed

{ very strong
storms
around
00UTC of
06/08,/2002.
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Atmospheric instability and sounding-derived indices

Equivalent Potential Temperatures on a Theta-plot

28-jun—1998,12:00:00

rdbd

o Z26LHZEN18-16-14-12-10 8 6 -4 -2 0 H 4

/
550 |7

woa/ o| , ) )

YYVYANVYY T 71
8 A 1 b
7
74

=
\\
O

SRS

/

7 7 — - i
300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380
Equivalent Potential Temperature (K)

Theta plot (rds16044).
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Operatively, the Theta-plot
diagram is computed
observing at different levels
p, T and T4, then deriving
q(p, T, Tg) and gsat(p, T)
and lastly computing and
drawing at each level

Ocd = Oce(p, T4, q),

©e =0Oc(p, T,q) and

ees = @e(pa T7 qsat)-
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Equivalent Potential Temperatures on a Theta-plot
28—-jun—1998,12:00:00 Theta plot (rds16044).
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and lastly computing and

drawing at each level

eed = ee(p’ Td7 q)r

©c =0Oe(p, T,q) and

ees = @e(pa T7 qsat)-
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Temperatures on a Theta-plot

28-jun—1998,12:00:00 Theta plot (rds16044).

The vertical profiles of ©.4,
©. and O, intersect on
the isothermes 7,4, T, and
T respectively, because of
the correspondences seen
before. Example shows
temperatures at 850 hPa.
(©es — Ocqg) resembles the
dew-point depressure

(T — T4): the more distant
are these two lines, the
more dry is that level.
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Temperatures on a Theta-plot

28—jun—1998,12:00:00

rdbd
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500 7 - — — >

A7/ 7V W

1000 - y - 7 T - - "11
300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 WINDS PROFILE
Equivalent Potential Temperature (K]
q P ) A soms

L

A—=-5MS

Theta plot (rds16044).

The vertical profiles of ©.4,
©. and O, intersect on
the isothermes 7,4, T, and
T respectively, because of
the correspondences seen
before. Example shows
temperatures at 850 hPa.
(©es — Ocqg) resembles the
dew-point depressure

(T — T4): the more distant
are these two lines, the
more dry is that level.

Note that on the skew-T it
is not possible to read the
value of T, .
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Mixing ratios on a Theta-plot

28—-jun—1998,12:00:00 Theta plot (rds16044).
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Mixing ratios on a Theta-plot
28—-jun—1998,12:00:00 Theta plot (rds16044).
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A potentially unstable sounding shown on a Theta-plot

28—jun—1998,12:00:00 Theta plot (rds16044). |f the mean air in the
S~ lowest levels (avoiding the
500 6
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A potentially unstable sounding shown on a Theta-plot

28—jun—1998,12:00:00 Theta plot (rds16044).
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If the mean air in the
lowest levels (avoiding the
surface superadiabatic
overestimation) is lifted
along a dry adiabat until
LCL and then along a
vertical saturated
pseudo-adiabat, a LFC can
be found, hence CAPE> 0.
Since ©; is conserved
along the whole process,
the LFC exists if and only if
O, of the initial parcel is
higher then the lowest O
in the mid-levels, i.e.
MaxBue> 0:
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The Lifted Parcel Theory on a Theta-plot

27-aug-2014,12:00:00 Theta plot (rds16044).

Since ©, is conserved along
the whole process, the Lifted
Parcel Theory on a
Thetaplot means simply to
draw a vertical line starting
from the initial parcel O,
that fixes everything else.
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The Lifted Parcel Theory on a Theta-plot

27-aug-2014,12:00.00 Theta plot (rds16044). Since O is conserved along
the whole process, the Lifted
Parcel Theory on a
Thetaplot means simply to
draw a vertical line starting
from the initial parcel O,
that fixes everything else.
In this case there is a first
LFC*, followed by a

, CAP. Specifically, it is
an inversion, but in general
it is sufficient to have a layer
where d©¢s/dz > 0 and not
also dT/dz > 0, because an
increase of ©4 with z can
stop the rising pareel.
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The Lifted Parcel Theory on a Theta-plot

27-aug-2014,12:00:00 Theta plot (rds16044).

Choosing another initial
parcel means simply to start
from a different ©, and to
draw another vertical line. It
is immediate to see how LFC
and EL change and how
much are reduced the CAPE
energy and the MaxBuo.
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The Lifted Parcel Theory on a Theta-plot

27-aug-2014,12:00:00 Theta plot (rds16044).

Choosing another initial
parcel means simply to start
from a different ©, and to
draw another vertical line. It
is immediate to see how LFC
and EL change and how
much are reduced the CAPE
energy and the MaxBuo.
On the Thetaplot the
(MUP) is
simply identified as the level
having the maximum ©,
among all the low levels.
The choice of the initial level
determines everything about
the whole adiabatie lifting.
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A potentially stable sounding having d©./dz < 0

25-aug-2014,12:00:00 Theta plot (rds16044).

If ©¢ is always lower than
©es then it is not possible to
find a LFC, hence CAPE =0
and MaxBuo< 0. It is better
to have a variable defined
even for stable soundings
(like MaxBuo or LI) than a
bounded variable like CAPE.
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A potentially stable sounding having d©./dz < 0

25-aug-2014,12:00:00 Theta plot (rds16044).

If ©¢ is always lower than
©es then it is not possible to
find a LFC, hence CAPE =0
and MaxBuo< 0. It is better
to have a variable defined
even for stable soundings
(like MaxBuo or LI) than a
bounded variable like CAPE.
The fact that there are two
layers with d©./dz < 0 have
no influences on the
potential instability.
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Importance of low-levels ©,

@ The fact that the identification of the initial parcel fixes its ©. value
means that all the rest of the pseudo-adiabatic lifting is determined
by that single value.
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Importance of low-levels ©,

@ The fact that the identification of the initial parcel fixes its ©. value
means that all the rest of the pseudo-adiabatic lifting is determined
by that single value.

@ After that the —conserved— ©, value of the initial parcel is chosen, all
its buoyancy and derived indices (LFC, EL, CAPE, CIN, MaxBuo,
LI,...) will depend only by the ©.s profile above it, hence by the
environmental alone, not by its humidity profile.
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Importance of low-levels ©,
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@ The fact that the identification of the initial parcel fixes its ©. value

means that all the rest of the pseudo-adiabatic lifting is determined
by that single value.
After that the —conserved— ©, value of the initial parcel is chosen, all
its buoyancy and derived indices (LFC, EL, CAPE, CIN, MaxBuo,
LI,...) will depend only by the ©.s profile above it, hence by the
environmental alone, not by its humidity profile.
The environmental humidity is particularly important in the

, Where the initial parcel is chosen, because the initial ©, value
strongly depends on it, but it is not important (from the point of view
of the parcel buoyancy) above the level where the initial parcel is
taken.
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@ The fact that the identification of the initial parcel fixes its ©. value

means that all the rest of the pseudo-adiabatic lifting is determined
by that single value.
After that the —conserved— ©, value of the initial parcel is chosen, all
its buoyancy and derived indices (LFC, EL, CAPE, CIN, MaxBuo,
LI,...) will depend only by the ©.s profile above it, hence by the
environmental alone, not by its humidity profile.
The environmental humidity is particularly important in the

, Where the initial parcel is chosen, because the initial ©, value
strongly depends on it, but it is not important (from the point of view
of the parcel buoyancy) above the level where the initial parcel is
taken.
That is true when buoyancy is computed using the normal
temperature. If the virtual correction is used, then there is a —

— influence of the environmental humidity profile even above the
initial parcel level.



Atmospheric instability and sounding-derived indices

Skew-T vs. Theta-plot

© The skew-T is widely used, so there are many software to compute it.
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Unstable Parcel, i.e. that having the in the low levels.
Instead, on the skew-T one have to apply the curved adiabat
processes to many initial parcels and find the maximum CAPE.
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The skew-T is , S0 there are many software to compute it.
The in the skew-T are proportional to the , SO the
CAPE/CIN “areas” are perfectly proportional to their values. That is
not true on the Theta-plot, but presently these values are computed
via software’s.

The Theta-plot show also ©, that is probably the single most useful
variable in meteorology, because it is conserved under many processes.
On the Theta-plot it is very easy to identify if an initial parcel has a
LFC (unstable sounding) or not, just lifting it along a

For this reason on the Theta-plot it is obvious to identify the Most
Unstable Parcel, i.e. that having the in the low levels.
Instead, on the skew-T one have to apply the curved adiabat
processes to many initial parcels and find the maximum CAPE.

The Theta-plot show also and not only T and Ty,.

Make your choice!
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Section 4

Sounding-derived indices and their
correlations
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Data-mining: the human effort to simplify Nature

o A is a very complex set of data describing the detailed
thermodynamical and horizontal-wind structure of the atmospheric
profile. For example, the Vaisala RS-92 sonde provides one observed
level every one second. The nominal ascension velocity is about
4.4m/s, so the troposphere is sampled in about 45 minutes (more
than measured levels!), during which the horizontal winds can
shift the sounding location of about 10-50 km.
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Data-mining: the human effort to simplify Nature

o A is a very complex set of data describing the detailed
thermodynamical and horizontal-wind structure of the atmospheric
profile. For example, the Vaisala RS-92 sonde provides one observed
level every one second. The nominal ascension velocity is about
4.4m/s, so the troposphere is sampled in about 45 minutes (more
than measured levels!), during which the horizontal winds can
shift the sounding location of about 10-50 km.

@ All this information is condensed into the format, that
provides only mandatory levels (TTAA) and significant levels (TTBB)
reducing the vertical resolution in troposphere to only levels.

@ Since the information is still “too large”, people have invented many
“indices” to reduce even more this “redundancy”. Each of this indices
try to investigate a particular characteristic of the sounding.

@ Manzato and Morgan (2003) and Manzato (2003) have presented the
SOUND_ANALYS.PY software to compute ~ 50 indices from a

e high-vertical resolution sounding.
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Comparing the raw data with the GTS-TEMP format
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he first ~ 50 levels in a raw sounding (left) or TEMP format (right).
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Different type of sounding-derived indices

From a sounding it is possible to derive three types of information:

(] (that do not need to apply the Lifted Parcel
Theory). Very commonly used are: K-index, Precipitable Water
(PWE), mean relative humidity of a layer, mean wind of a layer,
Shear, Helicity. . .

@ Indices that are computed based on the Lifted Parcel Theory and
hence strongly depends on the choice of the initial parcel (initial ©,)
and on the details observed in the low-levels. Very commonly used

are: LCL height or temperature, Showalter or Lifted
Index, CAPE, CIN, updraft velocity, MaxBuo. ..

(3] , which typically uses instability indices together with
wind information. Very commonly used are: Energy-Helicity Index
(EHI), SWEAT, SWISS. ..

We will see only a few of them!
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K-Index and its 1995-2002 distribution above Udine

Frequency distribution for KI ( 5781 cases, 1532 active cases )

Numb, of cases
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One of the oldest indices
is the (George,
1960). The dot line is the
sub-sample for soundings
associated with
convective activity in the
FVG plain in the 6 hours
after launch (1995-2002).
Values above 25 are often
associated with lightning
occurrences.
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K-Index and its 1995-2002 distribution above Udine

Frequency distribution for KI ( 5781 cases, 1532 active cases )

Numb, of cases

KIQ

One of the oldest indices
is the (George,
1960). The dot line is the
sub-sample for soundings
associated with
convective activity in the
FVG plain in the 6 hours
after launch (1995-2002).
Values above 25 are often
associated with lightning
occurrences.

KI = Tesgso — Tesoo + Taesso — (Teroo — Ta@700)- (16)
Kl is defined using only environmental temperature and dew-point
depressure on three mandatory levels. Even if very simple, it is also

correlated to rainfall intensity.
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“Two-levels” potential instability family

@ Showalter (1953) was the first to use the difference of temperature
between the lifted parcel and the environmental air at 500 hPa:

Showl = Tees00 — Tpes00 (K] (17)

Showalter used as initial parcel the mean air at 850 hPa.
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“Two-levels” potential instability family

° (1953) was the first to use the difference of temperature
between the lifted parcel and the environmental air at 500 hPa:

Showl = Tees00 — Tpes00 (K] (17)

Showalter used as initial parcel the mean air at 850 hPa.

o Galway (1956) defined the (L1) in the same way, but
using as initial parcel the mean air of the lowest 500 m.

@ Nowadays the most used “lifted index” is the one using as initial
parcel the Most Unstable Parcel (max®©.), called DT500 in Manzato
(2003) or by many authors.

e Manzato (2003) introduced also the temperature difference between
environment and lifted parcel evaluated at a fixed parcel temperature
(chosen —15°C) instead than to a fixed pressure level (500 hPa). It
was called Difference of Temperature at the Core Level ( ).
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1995-2002 distribution of the Udine MULI

Frequency distribution for DTS00 ( 5775 cases, 1526 active cases )

Numb. of cases
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DT500(C]

The dot distribution is
the sub-sample for
soundings associated with
convective activity in the
FVG plain in the 6 hours
after launch (1995-2002).
Low (< 2°C) or negative
values are associated with
lightning occurrences.
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1995-2002 distribution of the Udine MULI

Frequency distribution for DT500 ( 5775 cases, 1526 active cases)

The dot distribution is
the sub-sample for
soundings associated with
convective activity in the
FVG plain in the 6 hours
after launch (1995-2002).
(< 2°C) or
values are associated with
lightning occurrences.

Numb. of cases

DT500(C]

At least in Europe, there are a number of evidences where the Most

Unstable Lifted Index gives better when

forecasting convection (lightnings or hail or storm occurrences) than

CAPE, which is a bounded variable. References includes Manzato (2003),
s Groenemeijer and van Delden (2007), Kunz (2007)...
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1995-2002 distribution of the Udine CAPE and CIN

- Differently from the “two-level”
instability indices (which includes
8 also MaxBuo), CAPE and CIN

n: are integrated measures of

E buoyancy (positive for CAPE and

s negative for CIN). Note that
SOUND_ANALYS.PY computes

-~ ‘ : : the maximum UpDr velocity

‘ ’ ‘ ' ' using only the CAPE integrated
: : up to the parcel level of —15°C
instead of EL.

1200

Numb.of cases
20 a0 &0 s0 10
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1995-2002 distribution of the Udine CAPE and CIN

APE (5800 cases,

Differently from the “two-level”
instability indices (which includes
also MaxBuo), CAPE and CIN
are integrated measures of
buoyancy (positive for CAPE and
negative for CIN). Note that
SOUND_ANALYS.PY computes
the maximum UpDr velocity
using only the CAPE integrated
up to the parcel level of —15°C
instead of EL. The CAPE
distribution of convective cases is
not very different. ..

Also values of CIN> —100J/kg
are associated with convective
events in the-FVG plain.
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Maximum Buoyancy and Downdraft Potential

Frequency distribution for MaxBuo ( 5775 cases, 1526 active cases )
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Storms are more likely when
MaxBuo> —2K. Morgan
and Tuttle (1984) defined
MaxBuo but also other
indices, like the difference
between the maximum O
in the low levels and the
minimum O in the mid
levels, called Downdraft
Potential. DownPot=

> - o > Max(Oesliow) — Min(©c|mia).
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Numb. of cases

47

Maximum Buoyancy and Downdraft Potential

Frequency distribution for MaxBuo ( 5775 cases, 1526 active cases )
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Storms are more likely when
MaxBuo> —2K. Morgan
and Tuttle (1984) defined
MaxBuo but also other
indices, like the difference
between the maximum O
in the low levels and the
minimum O in the mid
levels, called

. DownPot=

> - - > Max(Oesliow) — Min(©c|mia).

Physical meaning: the coolest and more dry air in the middle troposphere
[Min(©e|midq)] is supposed to saturate by rainfall evaporation and hence is
brought down along a saturated pseudo-adiabat (©, is conserved). The
maximum thermal contrast (generating the outflow wind) will happen at
/tﬁfge low level where ©¢s is maxima. It measures the negative buoyancy.
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Wind hodograph and shear
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Wind hodograph and shear
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The is the plot of the two horizontal wind components u and
v. The hodograph path length is called
zy || oW
Jo |2z || 42 _ SN Sty = tn 12 + (Vo — Vo 1)?

Shear =

48 / 63 ZN — 20 ZN — 20

(18)
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Bulk shear

@ Shear is usually computed from surface up to 6 or from surface up to
troposphere (about 12 km).
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the magnitude of the vectorial difference between two winds at two
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@ The most used levels for the BS are: sfc vs. 1km, sfc vs. 850 hPa,
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@ For example, the is defined as 2 times
CAPE divided by the square of the bulk shear between 6 km and

500 m: BRN= 2CSAP;E.
BRI

49 / 63



MeTeon.FVG
_ Atmospheric instability and sounding-derived indices

Bulk shear

49 / 63

Shear is usually computed from surface up to 6 or from surface up to
troposphere (about 12 km).

Very often the shear is confused with the , that is simply
the magnitude of the vectorial difference between two winds at two
different levels: BS= \/(u2 — u1)2 + (v2 — n1)2.

The most used levels for the BS are: sfc vs. 1km, sfc vs. 850 hPa,
sfc. vs. 3km, sfc. vs. 5km, 1km vs. 3km, 1km vs. 6 km. ..

For example, the is defined as 2 times
CAPE divided by the square of the bulk shear between 6 km and

500 m: BRN= 2GAPE

Sgri®
In very complex orography terrains, like northern ltaly, it is not

obvious that shear will have the same importance in governing storm
organization (single cell, multicell, squall lines) as it has been found in
the US's plains, because of the complex interaction between winds
and orography. ..
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Storm—Relative Helicity
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Storm—Relative Helicity
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The (Davies-Jones 1990) is the area between the
storm-velocity vector, Vs, and the hodograph. Usually integrated up to
kM- [ R v x BB—W e 3 () — v 1) — e (19)
EO) z 1

50/ﬁ%hould be useful for supercells and tornadoes.
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Water Vapor Flux in the lowest 3 km

Frequency distribution for VFlux ( 5704 cases, 1474 active cases )
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In FVG (Adriatic Sea on the
South and Alps on the
North) we have found to be
very useful the water vapor
flux in the lowest 3 km:
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Water Vapor Flux in the lowest 3 km

Frequency distribution for VFlux ( 5704 cases, 1474 active cases )

In FVG (Adriatic Sea on the
South and Alps on the
North) we have found to be
very useful the

in the lowest 3 km:
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1 &
VFlux = N van < Vp
2
(20)

05 -0.10 -005 000 005

VFlux [kg/(sm2)]

Physical meaning: strong moist winds blowing from South (VFlux< 0)
brings the “convective fuel” against the orographic barrier, producing
convection triggered by orographic lifting or strong precipitating systems
(especially in autumn). Useful in particular for heavy rainfall forecast.
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Example of SOUND_ANALYS.PY output in a HTML page
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Just an example of
the many indices
computed by
SOUND_ANALYS.PY
for the Udine
1998/06/28 12UTC
sounding.

The three methods
“T", “T,” and T,
are explained in
Manzato and Morgan
(2003).
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Matrix of inter-correlations among sounding-derived indices

|Correlation Matrix| of all the predictors (1992-2009)

Manzato JAMC 2012

. >48y
has studied the sty
correlations among 52 DCTE%ES
indices derived from D:ivnnni%
1992-2009 00, 06, 12 wis
and 18 UTC Udine
soundings. LLK{L%%
These indices can be ML%%EVT
seen as a non-linear MLth%vié
reduction of 3D basic E%V%E
atmosphere variables F‘S%hg:ﬁ'
(p, T, RH, O, wind Ss:vvgéi
at many levels) into a I
set of intercorrelated 'VVVFVV'%EJ |
parameters.
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3 groups of indices highly inter-correlated (R> 0.80)

© Indices related to the , like its equivalent
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potential temperature (©,), its mixing ratio (Mix) and the height
where its ascent temperature becomes 0°C (MEL), or related to other
environmental characteristics, like the height where the atmospheric
wet bulb temperature becomes 0°C (WBZ) and the precipitable
water integrated along the entire atmospheric column (PWE).
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potential temperature (©,), its mixing ratio (Mix) and the height
where its ascent temperature becomes 0°C (MEL), or related to other
environmental characteristics, like the height where the atmospheric
wet bulb temperature becomes 0°C (WBZ) and the precipitable
water integrated along the entire atmospheric column (PWE).

Indices of potential instability such as Lifted Index
(Galway 1956), Showalter Index (Showalter 1953), DT500 and DTC
(Manzato 2003), i.e. the “lifted index family”. Also the Maximum
Buoyancy (Morgan and Tuttle 1984, Manzato and Morgan 2003,) is
very well related to three of these indices.
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potential temperature (©,), its mixing ratio (Mix) and the height
where its ascent temperature becomes 0°C (MEL), or related to other
environmental characteristics, like the height where the atmospheric
wet bulb temperature becomes 0°C (WBZ) and the precipitable
water integrated along the entire atmospheric column (PWE).
Indices of potential instability such as Lifted Index
(Galway 1956), Showalter Index (Showalter 1953), DT500 and DTC
(Manzato 2003), i.e. the “lifted index family”. Also the Maximum
Buoyancy (Morgan and Tuttle 1984, Manzato and Morgan 2003,) is
very well related to three of these indices.

Indices of potential instability, i.e. maximum updraft
velocity (UpDr), hail diameter (HD), CAPE and precipitable water
integrated between LFC and the equilibrium level (PWC). MaxBuo is
also well correlated with three of these indices.



Section 5

Atmospheric instability and sounding-derived indices

Forecasting meteo events with
sounding-derived indices
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The simplest way to use indices is setting a threshold
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Multivariate analysis is better then univariate

@ Instead of using one or more indices dichotomized with a “magic”
threshold, it is much more useful to apply a multivariate analysis, in
the multispace of more indices (joint probability).
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Multivariate analysis is better then univariate

@ Instead of using one or more indices dichotomized with a “magic”
threshold, it is much more useful to apply a multivariate analysis, in
the multispace of more indices (joint probability).

@ The simplest way to do it is to apply a Linear Discriminant Analysis
(LDA), finding a condition like a1 Xy + axXo + ... + ay Xy < const.
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@ Instead of using one or more indices dichotomized with a “magic”

threshold, it is much more useful to apply a analysis, in
the multispace of more indices (joint probability).

The simplest way to do it is to apply a

(LDA), finding a condition like a1 Xy + a2 X + ... + ay Xy < const.
Since the instability indices (candidate predictors) are usually too
many and since they are often correlated among them, it is
mandatory to implement a algorithm, like stepwise
selection (forward or backward) or brute-force exhaustive search of a
limited number of inputs (or others), in order to reduce in the
statistical model.
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@ Instead of using one or more indices dichotomized with a “magic”

threshold, it is much more useful to apply a analysis, in
the multispace of more indices (joint probability).

The simplest way to do it is to apply a

(LDA), finding a condition like a1 Xy + a2 X + ... + ay Xy < const.
Since the instability indices (candidate predictors) are usually too
many and since they are often correlated among them, it is

mandatory to implement a algorithm, like stepwise
selection (forward or backward) or brute-force exhaustive search of a
limited number of inputs (or others), in order to reduce in the

statistical model.

When a complex statistical method is applied, like one with many
predictors or non—linear models (neural networks), it is mandatory to
avoid the . A good way is to develop the model fitting a
trainig set and choosing the model that optimize the validation set.
Lastly, an independent test sample should be ‘used.
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Pre-processing the input data

@ For any forecasting problem it should be clarified if it is a
problem (forecasting among a few class categories, e.g.
binary events) or a problem (forecasting the value of a
continuous variable), because the statistical models applied are
different and also the forecast verification techniques are different
(e.g. contingency table vs. Taylor diagram).
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@ For any forecasting problem it should be clarified if it is a

problem (forecasting among a few class categories, e.g.
binary events) or a problem (forecasting the value of a
continuous variable), because the statistical models applied are
different and also the forecast verification techniques are different
(e.g. contingency table vs. Taylor diagram).
When simple linear methods are used, a pre-processing of inputs is not
always needed, but when non-linear methods are applied (maybe using
a random initial choice of parameters) it is much better to pre-process
the candidate predictors to make their domains more
For example, for regression problems, it is a commonly to
each variable, subtracting the mean value and dividing for the
standard deviation.
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@ For any forecasting problem it should be clarified if it is a

problem (forecasting among a few class categories, e.g.
binary events) or a problem (forecasting the value of a
continuous variable), because the statistical models applied are
different and also the forecast verification techniques are different
(e.g. contingency table vs. Taylor diagram).
When simple linear methods are used, a pre-processing of inputs is not
always needed, but when non-linear methods are applied (maybe using
a random initial choice of parameters) it is much better to pre-process
the candidate predictors to make their domains more
For example, for regression problems, it is a commonly to
each variable, subtracting the mean value and dividing for the
standard deviation.
For the classification problem, we suggest to transform each variable

in its of event occurrence, as explained
in Manzato (2005).
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Section 6
Conclusions
“Pazzo & bene da catene, He is a raving madman
Chi fastidio mai si da who ever takes the trouble
Per saper quel che sara...” to know what the future holds. . .

from the first act of “Sant’Alessio” (1631) by Stefano Landi (1587-1639), text by Giulio

Rospigliosi (16001669, also known as Pope Clemente IX).
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Conclusions

@ Think to “point of view" of water vapor, in particular to the adiabatic
processes on the saturation diagram.
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atmosphere profile with respect to large displacements, while static
(and conditional) instability is a characteristic of an atmosphere layer
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@ Reflect on the importance of the choice if the initial parcel, that
determine the full adiabatic process (initial parcel ©.).
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Think to “point of view” of water vapor, in particular to the adiabatic
processes on the saturation diagram.

Think in terms of equivalent potential temperature, ©,, that is a
conserved variable and. . . try to use the Thetaplot diagram.
Remember that potentially instability is a characteristic of an
atmosphere profile with respect to large displacements, while static
(and conditional) instability is a characteristic of an atmosphere layer
with respect to relatively small displacements.

Reflect on the importance of the choice if the initial parcel, that
determine the full adiabatic process (initial parcel ©.).

Consider the old Lifted Index before CAPE and compute the MaxBuo.
Try always a multivariate approach because more indices are better
then a few and be careful to avoid overfitting in your verification
process.

Thanks! For info: agostino.manzato@meteo:fvg.it
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