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Abstract. A method is presented which applies bias adjustments to climate indicators that are based on fixed
thresholds, e.g., the number of hot days with the maximum temperature exceeding 30 ◦C or the number of days
with heavy precipitation in exceedance of 20 mm rainfall. The bias adjustment first identifies the percentile of the
required threshold value in reference climate data. Then it computes the value of this percentile for the individual
historical climate model simulations – here an ensembles of EURO-CORDEX model runs, including dynamical
and statistical models. Finally, the climate indicator is re-calculated for each model. The method is applied to
climate projections as well, giving further insight into the projected development of the ensemble for extreme
conditions. It is assessed that communication to the public and decision makers is improved by expressing these
changes in extremes based on absolute values.

1 Introduction

1.1 Context

The majority of climate models – global climate models as
well as regional climate models – exhibit systematic differ-
ences between the observed current climate (e.g. in the refer-
ence period 1971–2000) and the simulated climate. The tech-
nical term for this deviation is bias. Statistical regional cli-
mate models, also called Empirical Statistical Downscaling
Models (ESDs) typically have a smaller bias than dynamical
models, also called Regional Climate Models (RCMs), since
they are based on observation data. Climate and climate im-
pact research relies on simulations with no considerable bias
in order to be applicable for future time frames (Gobiet et al.,
2015). Thus, it is self-evident to reduce it by a bias adjust-
ment, as stated in Christensen et al. (2008).

Most bias adjustment approaches are based on the station-
arity assumption of the bias (Grillakis et al., 2016), i.e., they
assume that the model bias is not changing in time. This un-
derlying assumption needs to be taken into account when
analysing bias adjusted model results or using them in im-
pact assessments, since it can distort the time series or add an
artificial component to the modeled climate change (Maraun,
2012; Chen et al., 2015). The standard procedure of bias ad-
justment is to apply it to individual parameters of a climate

simulation, e.g., precipitation or near-surface temperature.
However, interrelations between different modelled variables
(e.g., between temperature and humidity or between precipi-
tation, soil water contents and air temperature) are not taken
into account. This assumption ignores the reality of a fully
coupled climate system and can potential result in spurious
model fields, rendered by the bias adjustment (Ehret et al.,
2012; Rocheta et al., 2014). It could be shown, that this de-
ficiency have a significant impact on the adjusted fields and
impair the usage of the adjusted fields (Muerth et al., 2013;
White and Toumi, 2013; Chun et al., 2014) introducing artifi-
cial errors. However recently more and more bias adjustment
approaches emerge, taking care of the multivariate structure
of the system under adjustment (Cannon, 2016; Vrac and
Friederichs, 2015; Piani and Haerter, 2012). Advantages and
limitations of bias adjustment methods are summarized in
Maraun (2016).

The stationarity assumption and univariability of most bias
adjustment approaches used to-date can yield to artificial er-
rors in model fields that, in turn, could influence decisions by
end users. It is therefore important to communicate the side
effects of applying a bias adjustment. The Project ReKliEs-
De (Regionale Klimaprojektionen Ensemble für Deutsch-
land; Ensemble of regional climate projection for Germany)
not only had a focus on contributing to EURO-CORDEX by

Published by Copernicus Publications.



108 P. Hoffmann et al.: Bias adjustment for threshold-based climate indicators

Table 1. Pooled EURO-CORDEX simulations (green) and added simulations by ReKliEs-De (orange).

producing runs of dynamical and statistical climate models
(see Hübener et al., 2017a); it also had a focus on address-
ing end user needs (see Hübener et al., 2017b). ReKliEs-De
produced geographical distributions of 24 climate indicators,
mostly temperature- and precipitation-based1 This posed a
new challenge since so far bias adjustments were devised to
be applied to climate parameters but not to indicators.

Within ReKliEs-De we use three different approaches
to deal with model inherent biases. We tried to use bias-
independent indicators as much as possible to circumvent po-
tential deficiencies introduced by the model bias. In all other
cases we applied two different types of bias adjustment. In-
dicators based on fixed thresholds were adjusted using the
method described in this article. All other indicators were ad-
justed using a classical bias adjustment approach. Both bias
adjustment approaches used in ReKliEs-De were applied to
single variables (ignoring covariables) and assume bias sta-
tionarity.

1.1.1 Bias-independent indicators

Whenever the indicators are based on a relative measure,
such as a quantile, they are bias-free by definition. Examples
for this type of indicators are tx90p (number of days above
the 90th percentile of daily maximum temperature), tx10p
(number of days below the 10th percentile of daily maximum
temperature), wsdi (warm spell duration index) csdi (cold
spell duration index), r95ptot (precipitation amount above
the 95th percentile) and r99ptot (precipitation amount above
the 99th percentile). The threshold itself is subject to the in-
dividual model’s bias.

1.1.2 Indicators based on fixed thresholds

Numerous climate indicators are computed using prescribed
thresholds. The indicator su30, for example, counts the days

1For nomenclature and definitions of climate indicators, see
http://etccdi.pacificclimate.org/list_27_indices.shtml, last access:
4 June 2018.

on which the maximum temperature exceeds a threshold of
30 ◦C. However, this threshold is influenced by the model
bias. The bias adjustment is then performed by determining
the percentile belonging to this threshold from climate ref-
erence data and subsequently modifying the threshold itself
according to that percentile. Then the procedure of determin-
ing the day count is repeated using the modified threshold
(Hoffmann et al., 2017) which will lead to similar values
as the reference. The bulk of this paper will deal with this
threshold-modifying approach.

1.1.3 Classical bias adjustment approaches

A bias adjustment of this type directly changes simulated
variables using a set of prescribed rules to adapt the simula-
tions to fit the reference data. Those rules are devised in view
of the target variable, e.g., the monthly mean precipitation or
the distribution of daily precipitation intensities. Moreover,
there is a dependency upon the reference dataset used. A
rather simple bias adjustment would consist of a linear shift
of the data (adding to or subtracting from the values). More
sophisticated bias adjustment methods result in complex ef-
fects on climate change signals. Two methods are frequently
applied: (i) Local Intensity Scaling (LOCI) described, e.g.,
in Schmidli et al. (2006) and (ii) Analytical Quantile Map-
ping (AQM), described, e.g., in Sun et al. (2011) or Themeßl
et al. (2012). An overview of these and further bias adjust-
ment methods can be found in Fang et al. (2015).

1.2 Structure of the paper

The paper continues with a summary description of the
ReKliEs-De simulation matrix (GCM-RCM combination) as
the basis for the climate extreme assessment by calculating
threshold-based climate indicators (Sect. 2). In order to min-
imize the existing bias of the raw data against observations
we introduce a new approach which defines a model-specific
adjusted threshold without touching or manipulating the raw
data (Sect. 3). For the climate indicators su30 and r20mm all
patterns in historical simulations with and without adjusted
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Table 2. Naming convention for the models used.

GCM/ESM RCM

ECE, E01, E12 EC-EARTH WRF WRF
CN5 CNRM-CM5 CLM CCLM
CA2 CanESM2 HIR HIRHAM5
MPI, MP1, MP2 MPI-ESM-LR RAC RACMOE22
HG2 HadGEM2ES REM REMO
IP5 IPSL-CM5A-MR W13 WETTREG2013
MI5 MIROC5 ST3 STARS3

RCA RCA4

threshold are compared and discussed (Sect. 4). Comparisons
to other approaches are summarized in the end (Sect. 5).

2 Dataset

The ensemble contains regional climate model simula-
tions of the ReKliEs-De and EURO-CORDEX projects (Ta-
ble 1). Besides state-of-the-art dynamical regional downscal-
ing models (RCMs) also empirical-statistical downscaling
models (ESDs) were used. The total ensemble consists of
6 different RCMs (WRF, CCLM, HIRHAM5, RACMO22E,
REMO and RCA4) and 2 ESDs (WETTREG2013 and
STARS3) driven by 7 different Global Climate Models (EC-
EARTH, CNRM-CM5, CanESM2, HadGEM2-ES, MPI-
ESM-LR, IPSL-CM5A-MR, MIROC5). Table 2 displays all
combinations of RCMs and GCMs that were analyzed and
allocates them to their respective project. Within ReKliEs-
De, GCMs were selected with the aim to cover the spread
of anticipated near-to-midterm (until 2100) temperature and
precipitation changes in the area Germany drawn from all
available CMIP5 models.

Following the CORDEX-EUR11 protocol all RCM sim-
ulations cover the European continent on a 0.11◦ (approx.
12 km) grid. The ESD simulations use the same grid, but
covering just the Central European part of the domain, due
to their inherent methodological restrictions. Our analysis
encompasses the historical and RCP8.5 model runs (Jacob
et al., 2013) for a total period of 1971–2100.

In some cases, specific GCM and RCM versions are used
for different combinations. See Hübener et al. (2017a) for a
detailed model matrix, which specifies the model names and
versions.

We focus our analysis on a Central European domain ac-
cording to the ReKliEs-De project definitions. This domain
is defined by all grid boxes over land areas that belong to
river catchments discharging into German territory. The eight
main river catchments are Danube, Elbe, Ems, Main, Mosel,
Neckar, Rhine and Weser. The resulting mask covers mainly
Germany and parts of the Czech Republic as well as parts
of the alpine region. Figure 1 shows a map of all grid boxes
considered in our analysis.

Figure 1. EURO-CORDEX grid cells used for the analyses – the
ReKliEs-De area. It includes Germany and several catchments of
rivers discharging into Germany.

Within the ReKliEs-De project 24 standard climate indica-
tors were calculated, including those which are used in this
study:

– tasmax [◦C]: daily maximum near surface (2m) air tem-
perature;

– pr [mm]: daily sum of precipitation;

– su30 [days]: number of hot days (tasmax > 30 ◦C);

– r20mm [days]: number of days with very heavy precip-
itation (pr > 20 mm).

The quality of the bias adjustment depends on the quality
of the reference data set. The reference dataset used in this
study is based on a combination of two data sources inter-
polated onto the same grid as the model data (the CORDEX-
EUR11 grid): (1) the climate station network provided by the
German Weather Service (DWD) and (2) the European grid-
ded dataset EOBS-0.22deg-rot-v15.0 (Haylock et al., 2008).
The interpolation is based on Rudolf et al. (1992) which uti-
lizes a distance and directional weight. Hence two stations
lying in the same direction of the grid point (e.g. both north
of the grid point) will have a lower weight than two sta-
tions lying in opposite directions (e.g. north and south of
the grid point). As for the reference orography, we selected
an orography based on SRTMv3 which was bilinearly inter-
polated onto the 0.11◦ CORDEX-EUR11 grid. For the in-
terpolation of the temperature fields a constant lapse rate of
0.65K/100m was applied. We used no height adjustment for
the precipitation fields.

www.adv-sci-res.net/15/107/2018/ Adv. Sci. Res., 15, 107–116, 2018
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Figure 2. Work flow of the threshold adjustment approach, indicated by (a)–(d). First row: tasmax (OBS) → su30 (OBS). Second row:
→ tasmax (RCM)→ su30 (RCM). Larger graph (e): Resulting map for su26.6 (RCM). The box in the upper left corner of each subfigure
indicates the areal average (∅) for the ReKliEs-De domain. The box in the center of each subfigure shows the temperature threshold [◦C]
used to determine the number of hot days. The percentile of the temperature threshold is given in the right-hand side of the bar over the
figure. This bar also shows on its left-hand side which period is used and the text in its center denotes if observations (OBS) or a GCM-RCM
combination (in this example: MPI-CLM) is used.

3 Method description

The method was designed to adjust the bias for climate ex-
tremes, e.g. the number of hot days (su30) and the number
of very wet days (r20mm) in regional climate model simu-
lations. It is important to note that it had been a priority not
to alter the simulation data, themselves. A basic assumption
is that climate indicators using fixed thresholds must be ap-
plicable for the entire area of interest, encompassing moun-
tainous as well as lowland regions. The underlying idea is to
identify thresholds in the simulations of the reference period
(1971–2000) which are specific to the individual GCM-RCM
combinations and compare them to the defined fixed thresh-
olds in the observed climate for the same period.

An overview of the work flow for the temperature indica-
tor su30 is given in Fig. 2. The algorithm is as follows: We
start by calculating the percentile values Psu30 and Pr20mm
in the gridded daily observation data (1971–2000). Subse-
quently, the historical simulations for the period 1971–2000
by the GCM-RCM combinations are used to determine the
values related to the percentiles calculated in the observation
data. This is performed for every GCM-RCM combination.
In most cases the resulting thresholds are exhibiting a bias,
i.e., the thresholds are not matching those from the obser-
vation data, with model-specific deviations towards higher
or lower thresholds. Therefore the thresholds need to be ad-
justed. The indicators for the period 1971–2000 are calcu-
lated a second time, using the bias-adjusted thresholds in-
stead of the fixed thresholds (30 ◦C for su30 or 20 mm for
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Figure 3. Comparison of su30 (hot days with a maximum above 30 ◦C) regionalizations using 20C/historical runs data from the period
1971–2000. The forcing GCMs are arranged in columns and the RCMs in rows. Each row contains three pairs of maps for the three GCMs
used, showing su30 without (left) and with (right) bias adjustment.

www.adv-sci-res.net/15/107/2018/ Adv. Sci. Res., 15, 107–116, 2018
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Figure 4. As in Fig. 3 but for r20mm (number of days with heavy precipitation of 20 mm or more).
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Table 3. Simulations of two threshold-based climate indicators (top: su30; bottom: r20mm) within the ReKliEs-De region and the period
1971–2000. Columns of every table – forcing global models. Lines of every table – RCMs or ESDs. Pairs of tables are displayed, left –
simulated values, right – adjusted thresholds for the indicator. Light grey boxes – value is below the climatological average. Light yellow
boxes – value is above the climatological average. Green boxes – average is met within a margin of 0.5 units (top left and bottom left: days,
top right: ◦C; bottom right: mm). Numbers above each table denote the threshold value (sw), the frequency of occurrence in days (n) and the
percentile of the threshold (perc) computed from climate averages.

r20mm, respectively). Their values are then very close to the
observations, meeting the aim of the bias adjustment. For in-
tercomparison purposes, threshold matrices are given in Ta-
ble 3 for the model ensemble with su30 in the upper and
r20mm in the lower row.

To further illustrate the steps of the method, details from
an analysis using a simulation of the global model MPI-ESM
r1i1p1 (MP1) forcing the regional model CCLM (CLM) are
presented here for su30. Within the reference period (1971–
2000) and for the ReKliEs-De domain, the simulated long-
term annual mean of tasmax is 1.8 K lower than the observed
annual mean of the maximum temperature, cf. the boxes
in the upper left part of Fig. 2c and a. As a consequence
of the simulated lower mean of the maximum temperature,
the number of hot days (su30), averaged over the whole do-

main is much lower in the climate simulation by MP1–CLM
(0.7 days, Fig. 2d) than in the observed climate (4.5 days,
Fig. 2b). According to our method, we adjust the threshold
of 30 ◦C, so that the count of hot days approaches the ob-
served 4.5 days. This is achieved by using all grid points of
the ReKliEs-De domain from the years 1971–2000 of the
gridded observation data to calculate the percentile which
belongs to the fixed threshold of 30 ◦C. For this paricular
threshold, a percentile of 98.80 is determined. In the next step
the tasmax value belonging to the percentile of 98.80 is iden-
tified in the MP1–CLM simulation for the period 1971–2000
and all grid points of the ReKliEs-De domain. It is found
to be 26.6 ◦C. This constitutes the new bias adjusted thresh-
old for the recalculation of su30 for MP1–CLM which turns
from a su30 to a su26.6. As Fig. 2e shows, the resulting area
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Figure 5. Scatterplot of the projected number of hot days (su30) and very wet days (r20mm) using threshold adjusted RCM (red) and ESD
(magenta) simulations until 2041–2070 (RCP8.5). The simulations are numbered for reference in the right-hand tabulation. The window in
the top left corner enlarges the a segment of the graph near the label for model chain 31 (MPI-CLM) where several labels are overlapping.
Thick blue lines mark the baseline period (1971–2000) conditions for su30 and r20mm.

average for the indicator su30 simulated by the bias-adjusted
MP1–CLM (4.4 days) is very close to that from observed
data in Fig. 2b. Moreover, the spatial patterns of modelled
and observed data have a close resemblance, too (cf. Fig. 2b
and e).

In the frame of the ReKliEs-De project, further climate in-
dicators based on fixed thresholds (e.g., id, su, r10mm, gsl)
are subjected to the same bias adjustment process. With the
bias adjustment for those indicators established, the model
specific-thresholds are used to determine the indicators in
model projections for the entire 21st century.

4 Results and discussion

The method, described in Sect. 3 has been applied to the en-
tire ReKliEs-De ensemble in order to assess climate extremes
and their climate sensitivity. In the following paragraphs we
discuss the individual patterns (maps) for su30 and r20mm
with and without threshold adjustment. We also discuss the
underlying threshold matrix and present the results of future
projections.

The left-hand tables in Table 3 show the simulated su30
and r20mm values averaged over the RekliEs-De domain for
the historical period (1971–2000) without threshold adjust-
ment. The colors indicate the direction of the model bias,
negative (light grey) and positive (light yellow) compared to
the climate indicators derived from observations. Similar val-
ues are colored in light green. Since most of the RCMs have
a cold bias (Hübener et al., 2017b), the su30 numbers are fre-
quently underestimated, e.g., for EC-EARTH forcing REMO
(ECE–REM), 1.4 occurrences of su30 are computed for the

ReKliEs-De area in the simulation of the period 1971–2000,
whereas the measurements yield a count of 4.5 days. There is
a reversed situation for r20mm. Here, the RCMs frequently
overestimate the mean precipitation patterns for the ReKliEs-
De domain and also the r20mm indicator.

The right-hand tables of Table 3 depict the adjusted thresh-
olds for su30 and r20mm, respectively. They range from
25.6 ◦C (ECE–HIR) to 31.4 ◦C (CA2–W13 and MP1–W13)
for su30 and from 25.1 mm (ECE–HIR) to 17.9 mm (ECE–
W13 and MI5–W13) for r20mm. Applying these threshold
adjustments, the values of su30 and r20mm amount to nearly
4.5 and 5.1 days, respectively, for all ensemble members.

The resulting patterns for the 1971–2000 period with and
without adjusted thresholds are shown in Fig. 3 (su30) and
Fig. 4 (r20mm) for three GCMs (MP1, ECE and HG2). Af-
ter adjustment, all patterns show similar regional character-
istics with just minor differences. Without threshold adjust-
ments most of the model members underestimate the av-
eraged number of su30 by almost 4 days (e.g. MPI-CLM,
MPI-RCA, ECE-CLM, ECE-RCA). Simulations with HG2-
REM and HG2-WRF, on the other hand, exhibit a rather
close match to the climate conditions. The comparison of the
r20mm patterns with and without threshold adjustments re-
veals positive bias up to about 3 days (e.g. MPI–CLM and
MPI–WRF).

In order to assess the future development of su30 and
r20mm for the ReKliEs-De domain the climate indicators
were calculated for every model member in an RCP8.5 simu-
lation by using the adjusted threshold, respectively. Figure 5
depicts the changes for each model combination. It shows the
climate signals between the periods 2041–2070 and 1971–
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2000. The RCMs are represented in Fig. 5 by red lines and
the ESDs by magenta lines. The observed state for the base-
line period is indicated by thick blue lines. The conditions of
the period 1971–2000 for all ensemble members after bias
adjustment are gathered at the 4.5;5.1 days point, i.e., they
closely approximate the observations. Since the signals are
determined from projections using an RCP8.5 scenario it can
be inferred that without climate protection the number of hot
days (su30) will change until 2041–2070 between 8.8 and
21.5 days – the range is determined using the 10th and the
90th percentile of the ensemble. This behaviour is corrobo-
rated by all models. For r20mm two modelling families can
be distinguished: RCMs and ESDs. They exhibit different
trend directions with a decrease in r20mm for the ESDs and
a clear increase for the RCMs. Model combinations which
simulate a strong increase of su30 show a smaller increase of
r20mm, and vice versa. All RCMs in the ReKliEs-De ensem-
ble simulate an increase in the number of extreme weather
days (su30 and r20mm).

5 Summary and outlook

Simulations of regional climate models suffer from model
bias and users should be aware of this fact. The simulated
climate average for the historical period may be 1–2 K below
the observed average whereas, e.g., the number of hot days
(su30) is clearly lower. This also strongly varies depending
on the reference dataset used.

By the approach described in this paper we adjusted the
point of view for each climate indicator in order to arrive at
a similar mean level. This enhances the comparability of re-
gional features and climate sensitivity considerations.

This approach does not aim at replacing established bias
adjustments as an important intermediate stage for regional
impact assessments. Yet, it improves the qualitative evalua-
tion of features in regional climate ensembles without inject-
ing too much complexity.

Such an application has its spatial limitations. The
ReKliEs-De area is rather large and stretches the concept of
obtaining feasible area statistics for climate indicators. How-
ever, the method could also be applied to single grid boxes
or sub-domains. In that case the area must be of sufficient
size and appropriate location, so that there are enough events
defined by the threshold in the model simulations and the
observations. In addition, border effects might occur, once
the area in which the amount of threshold correction is de-
termined differs from that in which the threshold correction
is applied. It should be added that the quality of the results
highly depends on the quality of the observation data. A final
remark: An investigation to what extent the derived adjusted
threshold matrix can be transferred to other variables would
have been beyond the scope of this study.
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the end of this web document.
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