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Temperature and humidity retrievals from an international network of ground-based micro-
wave radiometers (MWRs) have been collected to assess the potential of their assimilation
into a convective-scale numerical weather prediction (NWP) system. Thirteen stations over
a domain encompassing the western Mediterranean basin were considered for a time period
of 41 days in autumn, when heavy precipitation events most often plague this area.

Prior to their assimilation, MWR data were compared to very-short-term forecasts.
Observation-minus-background statistics revealed some biases, but standard deviations
were comparable to that obtained with radiosondes. The MWR data were then assimilated
in a three-dimensional variational data assimilation system through the use of a rapid
update cycle. A first set of four different experiments were designed to assess the impact
of the assimilation of temperature and humidity profiles, both separately and jointly. This
assessment was done through the use of a comprehensive dataset of upper-air and surface
observations collected in the framework of the HyMeX programme.

The results showed that the impact was generally very limited on all verified parameters,
except for precipitation. The impact was found to be generally beneficial in terms of most
verification metrics for about 18 h, especially for larger accumulations. Two additional
data-denial experiments showed that even more positive impact could be obtained when
MWR data were assimilated without other redundant observations. The conclusion of the
study points to possible ways of enhancing the impact of the assimilation of MWR data in
convective-scale NWP systems.
Key Words: mesoscale data assimilation; ground-based remote sensing; numerical modelling; MWRnet; Arome-
WMed; HyMeX; heavy-precipitation events
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1. Introduction

Nowadays, ground-based microwave radiometers (MWRs) are
robust instruments providing continuous unattended operations

†The copyright line for this article was changed on 8 September 2016 after
original online publication.

and real-time accurate atmospheric observations under nearly
all weather conditions (Cimini et al., 2011; Löhnert and Maier,
2012). MWR products are used for a variety of applications
including, but not limited to, operational meteorology, air-quality
monitoring, wave-propagation studies, as well as site climatology
characterization (Westwater; 1993; Cimini et al., 2011,2015;
Löhnert and Maier; 2012). At the same time, numerical weather
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prediction (NWP) systems have increasing needs for high-
resolution observations both in time and space as their own
resolutions increase. Typically, current limited-area operational
NWP systems run at the kilometre scale and provide forecasts
taking into account the latest observations every couple of
hours. For instance, both the Met Office’s UKV (Tang et al.,
2013) and DWD’s COSMO-DE (Baldauf et al., 2011) models
are run in rapid update cycles with new forecasts initialized
every 3 h and data assimilation being carried out at horizontal
resolutions of 3 and 2.8 km, respectively. Over recent years,
substantial efforts have been devoted to the assimilation of
observations specific to the convective scale, such as radar data
(e.g. Sun, 2005; Stephan et al., 2008; Montmerle and Faccani,
2009; Caumont et al., 2010; Schwitalla and Wulfmeyer, 2014),
which provide information on dynamics and microphysics, and
also Global Positioning System (GPS) Zenith Total Delay (ZTD)
data (e.g. Yan et al., 2009a,2009b), or Slant Total Delay data
(e.g. Kawabata et al., 2013), which mainly provide information
on the integrated water content. The assimilation of such data
has even become operational at some national weather centres.
Other observations which have been considered recently include
lightning flash rate from ground-based networks (e.g. Fierro et al.,
2014), whose relationship to model parameters is particularly not
straightforward, lidar water vapour (e.g. Bielli et al., 2012), and
lidar wind (e.g. Kawabata et al., 2014), among others. Even
so, humidity and temperature are still acknowledged as poorly
observed parameters at the kilometre scale, especially in the
planetary boundary layer.

In spite of all these considerations, the use of MWR data
for assimilation into NWP systems has been limited to a few
sporadic attempts. For example, three- and four-dimensional
variational (3D-Var and 4D-Var, respectively) assimilation of
temperature and humidity data from a single ground-based MWR
has been attempted for a winter fog event by Vandenberghe
and Ware (2002). The data were assimilated at a horizontal
resolution of 10 km with the Fifth-Generation Pennsylvania State
University/National Center for Atmospheric Research Mesoscale
Model (MM5; Grell et al., 1994) over a common time window
of 3 h. Both 3D-Var and 4D-Var assimilation experiments were
able to forecast the fog to some extent, whereas a control run
without data assimilation could not. However, MWR data were
assimilated along with integrated water vapour content from
GPS ground receivers and radar wind profiles; this prevented the
attribution of the impact of data assimilation solely to MWR data.

More recently, an Observing System Simulation Experiment
(OSSE) considering a simulated network of 140 MWRs was
carried out for a winter storm case (Otkin et al., 2011; Hartung
et al., 2011). The Weather Research and Forecasting (WRF) model
(Skamarock et al., 2005) and an ensemble Kalman filter (EnKF)
algorithm were used to assimilate simulated MWR temperature
and humidity profiles at a horizontal resolution of 18 km every
hour during a period of 24 h. Overall, the authors found that the
assimilation of MWR data had a positive impact on temperature
and humidity analyses. The impact on forecasts up to a range of
12 h was found to be positive with respect to 850 hPa moisture
flux, but more variable regarding precipitation accumulations.

These studies all showed a promising impact of the assimilation
of MWR data into NWP, though results were limited to single
case-studies and deep convection was parametrized in the chosen
NWP systems. The novel purpose of this article is to assimilate data
from a real network of ground-based MWRs in a convective-scale
NWP system, and study its impact on heavy precipitation
forecasts. This study was carried out in the framework of

the international Hydrological cycle in the Mediterranean
Experiment (HyMeX; Drobinski et al., 2014), in preparation
for the HyMeX First Special Observing Period (SOP 1; Ducrocq
et al., 2014). One of the goals of HyMeX SOP 1 was to improve
our understanding and predictive skills of heavy precipitation
and related flash floods around the Western Mediterranean
(WMed) basin. Temperature and humidity retrievals from an
international continental-scale network of MWRs have been
collected for a period of 41 days and assimilated into a version of
the operationally used convective-scale NWP system Arome.

Section 2 presents the characteristics of the period under
investigation, the NWP system, and the microwave radiometer
observations used in the study. Section 3 reports upon the
observation-minus-background statistics computed prior to the
assimilation experiments. Section 4 describes the assimilation
experiments performed in this study and the impact of
assimilating MWR temperature and/or humidity on various
atmospheric parameters. Section 5 summarizes the findings and
discusses the results as well as paths of improvement.

2. Experimental environment

This study has been carried out in preparation for HyMeX’s
SOP 1, which was dedicated to the study of heavy precipitation
and flash flooding in the northwestern Mediterranean. Such
extreme events most often occur in autumn (Ricard et al., 2012).
This is the reason why SOP 1 was held from 5 September to 5
November 2012. The experimental design that is described in
the following was motivated by the occurrence of many heavy
precipitation events (HPEs) during the autumn of 2011 and the
concurrent availability of the Arome-WMed prototype and MWR
data over the same period.

2.1. Period under investigation

The northwestern Mediterranean coastal areas were particularly
affected by HPEs in the autumn of 2011. The period considered
in this study extends from 15 October to 25 November 2011 and
encompasses most of the HPEs which occurred that year. Time
series of 24 h accumulated precipitation averaged over the western
Mediterranean area show when these HPEs occurred (Figure 1).
The two periods with the largest daily accumulations, i.e. around
25 October and 5 November, have received a lot of attention
from hydrometeorologists. For instance, Pulvirenti et al. (2014)
studied the severe weather event that hit northwestern Italy from
3 November to 8 November 2011. Silvestro et al. (2012), Fiori
et al. (2014), and Hally et al. (2015) studied the Genoa case of 4
November, which occurred in Liguria, Italy. Rebora et al. (2013)
and Buzzi et al. (2014) also studied this latter case along with the
Cinque Terre case of 25 October, which also occurred in Liguria.
The Cévennes, France, case of 1–4 November has been dealt with
by Hally et al. (2013). This period of time (41 days) has also been
chosen to be long enough to yield robust statistics.

2.2. NWP system

The NWP system used in this study is Arome-WMed, a particular
version of the Arome system (Seity et al., 2011) covering the
western part of the Mediterranean Sea (Figure 2). As such,
Arome-WMed is more suited to study Mediterranean HPEs than
its operational counterpart over the ‘France’ domain. Another
advantage is that its domain is larger than the operational one,
which allows it to include more MWRs. Like its operational
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Figure 1. Time series of mean daily precipitation accumulation (mm) from the 4524 rain gauges represented as crosses in the insert.
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Figure 2. Topography (m) and domain of Arome-WMed (large area delineated
by solid black line) and the sub-domain considered in Figure 9. Locations of MWR
sites are also shown (large circles; + and × indicate respectively humidity and/or
temperature retrievals whenever available). Locations of radiosonde launch sites
used in section 4.1 are represented as small circles.

counterpart until 13 April 2015, Arome-WMed has a non-
hydrostatic dynamical core with a horizontal resolution of 2.5 km
and 60 vertical levels which follow the terrain in the lowest layers
and isobars in the upper atmosphere. The detailed physics of
Arome-WMed are inherited from the research Meso-NH model
(Lafore et al., 1998). Deep convection is assumed to be resolved
explicitly, but shallow convection is parametrized following
Pergaud et al. (2009). A bulk one-moment microphysical scheme
(Pinty and Jabouille, 1998) governs the equations of the specific
contents of six water species (humidity, cloud liquid water,
precipitating liquid water, pristine ice, snow, and graupel).

Arome-WMed has a 3D-Var data assimilation system
(Brousseau et al., 2011) with background covariances specially
computed for the ‘WMed’ domain. 3D-Var analyses are
performed every 3 h and provide new initial states for subsequent
forecasts. Such assimilation cycles are usually referred to as rapid
update cycles. Data assimilated by the Arome data assimilation
system include observations from radiosondes, wind profilers,
aircrafts, ships, buoys, automatic weather stations, satellites,
GPS stations (Mahfouf et al., 2015), and both radar reflectivity
(Wattrelot et al., 2014) and Doppler radar wind velocity
(Montmerle and Faccani, 2009). Figure 3 details the average
numbers of observations which are used to produce a single
analysis. In total, nearly 34 000 observations are assimilated
in each data assimilation cycle. In addition, 30 h forecasts are
performed starting from the 0000 UTC analysis every day.

The lateral boundary conditions (LBCs) that are needed to
compute Arome-WMed forecasts are updated hourly. They are
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Figure 3. Average number of observations assimilated in Arome-WMed per
analysis for each observation type (here shown for the CTRL experiment described
in section 3). AMV = atmospheric motion vector; GPS = Global Positioning System
zenith total delay. Note the logarithmic scale on the y-axis.

provided by the global Arpege NWP system (Courtier et al.,
1994). Arpege has a horizontal resolution of approximately 15 km
over the WMed domain. Arpege forecasts are initialized every 6 h,
i.e. at 0000, 0600 UTC, etc. In the Arome-WMed rapid update
cycle, the most recent Arpege analyses or forecasts are used every
hour as LBCs. For the 30 h Arome-WMed forecasts starting at
0000 UTC, Arpege forecasts also initialized at 0000 UTC are used
as LBCs, i.e. with the same ranges as Arome-WMed.

With a similar configuration, the Arome-WMed system was
run in real time during HyMeX SOP 1 and contributed to guide
the deployment of dedicated, mobile observing platforms such
as research aircraft and boundary-layer pressurized balloons
(Fourrié et al., 2015, give more details about Arome-WMed).

2.3. Microwave radiometer observations

The microwave radiometer observations considered here consist
of atmospheric temperature and humidity profiles (from sur-
face up to 10 km altitude) retrieved by 13 ground-based MWRs.
Microwave radiometry is a passive technique that has been used
for several decades to observe thermodynamic profiles in the
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troposphere (Westwater, 1993; Westwater et al., 2005). Ground-
based MWRs measure the downwelling radiance coming from
the atmosphere. The radiance is usually expressed in terms of
brightness temperature, Tb. Most common MWRs measure Tb at
selected channels in the 20–60 GHz frequency range (0.5–1.5 cm
wavelength). MWR humidity profilers exploit 20–30 GHz chan-
nels, while MWR temperature profilers exploit 50–60 GHz chan-
nels. MWR full (i.e. temperature and humidity) profilers have
channels in the 20–60 GHz range. In principle, Tb can be assimi-
lated directly as is now commonly done for satellite sounders (e.g.
Andersson et al., 1994). However, direct assimilation requires
a fast radiative transfer model and its adjoint, which were not
available at the time of this analysis. Such tools are currently
being implemented (De Angelis et al., 2016). Instead, we consider
here atmospheric temperature and/or humidity profiles which are
inferred by processing the measured Tb together with some a priori
knowledge within an inverse method. Different inverse methods
may be used, including multivariate regression, optimal estima-
tion, and neural networks (Westwater, 1993; Cimini et al., 2006).
The a priori information is generally obtained from radiosonde cli-
matology, though methods exploiting model analyses or forecasts
have also been demonstrated (Cimini et al., 2011; Güldner, 2013).

Temperature and humidity profiles retrieved from MWR
observations are usually validated against simultaneous
radiosonde measurements. Statistics (mean and standard devia-
tion) of the difference between MWR retrievals and radiosonde
measurements are used to quantify the accuracy of MWR
retrievals. For temperature profiles, the standard deviation is
typically of the order of 0.5 K near the surface, increasing to
about 1.5–2 K in the middle of the troposphere (Güldner and
Spänkuch, 2001; Liljegren et al., 2005). The best performance
of MWR temperature profiling is thus expected in the bound-
ary layer (Crewell and Löhnert, 2007). For profiles of absolute
humidity, the standard deviation is typically less than 0.5 g m−3

near the surface, increasing to 1.5 g m−3 in the first 2 km and
decreasing exponentially above that level due to the decrease of
humidity with height (Güldner and Spänkuch, 2001; Liljegren
et al., 2005). Typically, these values are only weakly dependent on
the inversion method. Differences from site to site are largely due
to specific MWR characteristics and a priori data.

The statistics above include the radiosonde sensor uncertainties
as well as the representativeness errors caused by balloon drifting,
and thus indicate the envelope for the retrieval uncertainty
expected from well-calibrated and maintained MWRs. Sources
contributing to the total retrieval uncertainty include instrument
calibration, microwave absorption model, a priori climatology,
and smoothing error.

The smoothing error is due to the relative low-to-moderate ver-
tical resolution attainable by MWR retrieved profiles. Although
MWR retrievals are given on fixed vertical grids depending
upon instrument settings (e.g. every 50 m from the surface to
1 km, then every 250 m up to 10 km), the true vertical resolution
depends on many factors, including the elevation scanning
strategy and the atmospheric conditions. One method commonly
used to quantify the true vertical resolution of MWR retrievals
is the inter-level covariance (ILC; Güldner and Spänkuch,
2001; Liljegren et al., 2005; Cimini et al., 2006). For a generic
MWR operating in the 20–60 GHz range, the vertical resolution
decreases almost linearly with height, z, from relative small ILC
values (higher resolution) near the surface to larger ILC values
(lower resolution) in the upper troposphere. Following Liljegren
et al. (2005), one can estimate the true vertical resolution of MWR
retrievals as:

• ILC � 0.5z + 0.1 (for temperature),
• ILC � 0.3z + 0.4 (for humidity),

where both ILC and z are expressed in km.
Additional systematic retrieval error can be caused by

environmental conditions (e.g. wetting of the radiometer radome)
and faulty calibration. For example, Löhnert and Maier (2012)
show that a significant bias (∼0.5–1 K) in temperature may occur
as a function of height throughout the troposphere, mainly due
to systematic calibration offset in Tb. These may be corrected
for by continuous comparisons with radiosondes (if available) or
within the assimilation procedure itself using the model as mean
reference.

In this study we consider 13 MWR units falling within the
domain of Arome-WMed, as shown in Figure 2. These instru-
ments belong to different European institutions and are members
of MWRnet, an International Network of Ground-based
Microwave Radiometers (http://cetemps.aquila.infn.it/mwrnet/;
accessed 7 July 2016). MWRnet aims at defining the best
practice for obtaining good-quality MWR observations and
retrievals, ultimately increasing the use of MWR data in NWP
and other applications. Details on each considered MWR are
summarized in Table 1. These include one humidity profiler,
three temperature profilers, and nine full (temperature and
humidity) profilers. The humidity profiler is MIAWARA, a
prototype built and maintained at the Institute of Applied
Physics (IAP) of the University of Bern (Deuber et al., 2004;
Straub et al., 2010). MIAWARA is a spectro-radiometer with
16 000 channels around the water-vapour absorption line at
22.235 GHz (from 21.734 to 22.735 GHz). The humidity profile
retrievals are obtained using an optimal estimation inversion
method. The three temperature profilers are one TEMPRO
and two MTP5-HEs. TEMPRO is a seven-channel (from 51.26
to 58.0 GHz) radiometer manufactured by Radiometer Physics
Gmbh (RPG). Temperature profile retrievals are obtained using
a multivariate linear regression inversion method. MTP5-HE is
a single-channel (56.60 GHz) radiometer manufactured by RPO
ATTEX. MTP5-HE performs rapid and dense elevation scans to
provide temperature retrievals up to 1 km altitude. The nine full
(temperature and humidity) profilers are multichannel radiome-
ters manufactured by either RPG (HATPRO) or Radiometrics
Inc. (MP3000). Temperature and humidity profile retrievals
(from surface up to 10 km) are obtained using multivariate
regression and neural network inversion methods, respectively.

For the period under analysis, the operating institution of
each of the 13 MWRs in Table 1 provided original non-bias-
corrected temperature and/or humidity profiles as obtained using
the operational inverse method. Nominal uncertainties within the
troposphere are approximated to be within 0.5 and 2 K for temper-
ature and 0.5 and 1.5 g m−3 for absolute humidity, independent of
inversion method. The complete dataset has been down-sampled
at 3 h interval to match the assimilation scheme of Arome-WMed,
i.e. observed data have been averaged over a 1 h window centred
on the analysis time and assimilated at 3 h intervals.

Absolute humidity retrieved from the MWR data was converted
to specific humidity, the latter quantity being used in the
monitoring and assimilated in data assimilation experiments.
Temperature is needed to convert absolute humidity to specific
humidity. Tests were performed that compared specific humidity
obtained by using either temperature retrieved from the MWR
data or temperature from Arome-WMed 3 h forecasts. Differences
in resulting specific humidities were found to be negligible
(not shown). For monitoring and data assimilation purposes

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. 142: 2692–2704 (2016)



2696 O. Caumont et al.

Table 1. Station name, operating institution, location (latitude and longitude), altitude (Alt) above mean sea level, available products (Prod), type, number of
channels, frequency range and retrieval method for the 13 MWRs considered in this study.

Station Institution Lat. Lon. Alt. Prod. Type No. of Frequency Retrieval
(◦N) (◦E) (m) channels range (GHz) method

Bern IAP 46.88 7.46 905 H MIAWARA 16 000 21.74–22.74 OE
Cagliari INAF/OAC 39.50 9.24 623 T,H MP3000A 35 22.00–58.80 NN
Granada IISTA-CEAMA 37.16 −3.60 683 T,H HATPRO 14 22.24–58.00 MR
Kloten MeteoSwiss 47.48 8.53 436 T TEMPRO 7 51.26–58.00 MR
Lampedusa ENEA 35.51 12.34 50 T,H HATPRO 14 22.24–58.00 MR
Madrid UniLeon 40.49 −3.46 620 T,H MP3000A 35 22.00–58.80 NN
Padova ARPAV 45.40 11.89 30 T MTP5-HE 1 56.60 SR
Payerne MeteoSwiss 46.82 6.95 491 T,H HATPRO 14 22.24–58.00 MR
Potenza CNR-IMAA 40.60 15.72 760 T,H MP3014 12 22.235–58.80 NN
Rovigo ARPAV 45.07 11.78 23 T MTP5-HE 1 56.60 SR
Schaffhausen MeteoSwiss 47.68 8.62 437 T,H HATPRO 14 22.24–58.00 MR
Schneefernerhaus UniCologne 47.42 10.98 2 650 T,H HATPRO 14 22.24–58.00 MR
Toulouse ONERA 43.38 1.29 144 T,H HATPRO 14 22.24–58.00 MR

H and T denote humidity and temperature profiles, respectively.
OE = Optimal estimation; NN = Neural network; MR = Multivariate regression; SR = Statistical regularization.

(sections 3 and 4), temperatures were retrieved from the MWR
data when they were available, and from Arome-WMed 3 h
forecasts otherwise.

3. Monitoring of observations

Before assimilating MWR products, observation-minus-
background (O−B) values have been computed for temperature
and specific humidity profiles at each site in order to check the
consistency between MWR products and 3 h model forecasts. A
control (CTRL) experiment, which assimilated all observations
described in section 2.2 except MWR products, was used for
that purpose. The 3 h forecasts of its rapid update cycle provided
temperature and specific humidity profiles that were interpolated
at the observation locations. Thus, a total of 8 × 41 = 328
background forecasts were produced for the O−B statistics.

An example of O−B temperature differences for one site and
the whole period is shown in Figure 4. The daily cycle as well as the
longer-scale modulation measured by the MWR and simulated by
the model are consistent. For temperature, differences seem well
centred and are usually within 2 K, though they can exceptionally
exceed 5 K. For specific humidity, sharp transitions can be noticed
in the O−B time series, which are caused by the more variable
nature of tropospheric humidity.

O−B statistics were computed from O−B differences at each
site. The mean and the standard deviation of the differences in
temperature are shown in Figure 5. The biases in temperature can
be quite large and reach ±4 K. However, biases are always lower
than ±2 K below 2 km amsl, except for Madrid. The biases vary
substantially from one site to another. However, the average bias
for all MWR data is remarkably close to zero and always within
±1 K (not shown). As expected, standard deviations increase
with altitude for temperature from approximately 1 to 2–3 K,
because of the intrinsic lower resolution of retrievals at high
altitudes compared to that of the model. Compared to the biases,
the standard deviations do not depend much on the station,
except for Schneefernerhaus, which provides slightly better O−B
standard deviations than the average.

The O−B statistics for specific humidity are presented in Fig-
ure 6. Both biases and standard deviations decrease with altitude
for specific humidity. This is caused by the depletion of specific
humidity with altitude. On the other hand, standard deviations
increase with altitude for relative humidity for the same reason
as for temperature (not shown). In the lower altitudes, the biases

for specific humidity are within ±1.5 g kg−1, while the standard
deviations are within 0.5–1.5 g kg−1. These values are more or
less the same for all stations. However, it may be noticed that the
Madrid station provides the worst bias between 2.5 and 4 km amsl,
the one at Potenza provides the worst standard deviation between
1 and 3 km amsl, and the station at Schneefernerhaus provides
the lowest standard deviation above 3 km amsl.

The larger biases seen in both temperature and specific
humidity retrievals are due to a combination of model bias,
instrument bias, and retrieval bias. Methods to produce weakly
biased MWR retrievals are already available (Löhnert and Maier,
2012; Güldner, 2013), though were not used operationally at the
sites considered here. Although the biases of MWR retrievals are
generally larger than those of radiosondes, the standard deviations
are of the same order.

Based on these statistics, further quality control was performed
such as removing retrieved temperature profiles when the
profile bias minus the average profile bias exceeded 2 K, or
removing retrieved temperature from the Kloten station above
3 km amsl (the latter data are not shown in Figure 6). However,
this additional quality control did not discard much data and
should be more strict in an operational context. In addition, all
observations were bias-corrected against the model prior to their
assimilation: for each observation, the average O−B value for the
given station and altitude was subtracted from the original value.
Figures 5 and 6 plotted with the corrected values would result in
all curves drawn on the x = 0 axis for the bias, but unchanged
for the standard deviation.

4. Data assimilation experiments

In order to investigate the impact of MWR data assimilation,
three Arome-WMed experiments were run in addition to the
CTRL experiment described in section 3. These three experiments
assimilated, in addition to operational data, MWR products
described in section 2.3: temperature profiles only (DA T),
humidity profiles only (DA Q), and both temperature and
humidity profiles (DA TQ). With the 3D-Var rapid update cycle
used here, the information brought by MWR observations at a
given time was indirectly propagated throughout the experiment
through the 3 h forecasts. For instance, when computing initial
conditions at 1200 UTC, operational observations and MWR
products (temperature, humidity or temperature and humidity,
depending upon experimental run) were merged with a 3 h
forecast which started at 0900 UTC from an analysis that took into
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Figure 5. Vertical profiles of (a) the mean and (b) standard deviation of observation-minus-background temperature (K) for each MWR station.
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Figure 6. Vertical profiles of (a) the mean and (b) standard deviation of observation-minus-background specific humidity (g kg−1) for each MWR station.

account operational and MWR observations. An estimate of the
observation error is needed to run variational data assimilation.
In this study, the observation-error standard deviation for specific
humidity was set to 12% of specific humidity at saturation, while
for temperature it was within 1–1.5 K, depending on the model
level. These values are typically used to assimilate radiosonde data.

4.1. Verification against upper-air observations

The direct impact of the assimilation of MWR data on upper-air
temperature and humidity, as well as the indirect impact on
upper-air wind was verified against radiosonde measurements.
The locations of the 30 available radiosonde launch sites are
plotted as small circles in Figure 2. The bias and root-mean-square
error were computed for all 3 h forecasts and all radiosoundings
valid at the same times. A total of 798 available soundings were

used. It was found that all experiments yielded very similar results,
and the differences among them were not found to be statistically
significant for all considered parameters, i.e. temperature, relative
humidity, wind speed, and wind direction.

Several reasons may be hypothesized to explain these similar
statistics. First, the radiosonde data which are used for verification
are also assimilated in all experiments. However, this is done
12–24 h before the verification, so it is likely that most of their
impact is lost after such a period of time. It is all the more
likely since many other upper-air data such as satellite radiances
(about 21 900 in each analysis) are assimilated in the assimilation
cycles between the radiosonde data assimilation time and the
verification time. Second, given the relative sparseness of the
radiosounding network, the impact of assimilating MWR data
may not be propagated to radiosonde launch sites. Third, the
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Figure 7. (a) Bias, (b) root-mean-square error and (c) correlation coefficient for all experiments starting at 0000 UTC for 6 h accumulated precipitation against
rain-gauge observations, over the whole period and domain.

information provided by MWR data may be redundant with that
of other observing systems such as radiosondes. This latter aspect
is addressed in section 4.3.

4.2. Verification against surface observations

The impact of the assimilation of MWR data was also assessed
by contrasting experiments with observations from ground
weather stations. Through the use of the HyMeX database, it
was possible to get dense data over Spain, France, and Italy,
while synoptic surface measurements available over the Global
Telecommunication System (GTS) were used over the rest of the
domain. These ground stations usually measure surface pressure,
2 m temperature and humidity, 10 m wind, and precipitation
accumulations over various time periods.

Verification statistics for all these parameters were extensively
computed for all forecast terms of the runs which started at
0000 UTC. The impact of the assimilation of MWR data is
generally very limited, whatever the forecast term considered,
and the differences between all experiments was not found to be
statistically significant for surface pressure, 2 m temperature and
humidity, and 10 m wind.

These similarities in verification statistics pertain for all verified
parameters, except those related to precipitation. Indeed, more
pronounced, statistically significant, differences are obtained for
quantitative precipitation forecasts (QPFs) as verified by rain-
gauge observations. For instance, Figure 7 shows continuous
verification statistics for 6 h accumulated precipitation forecasts
as a function of the forecast range.

While bias in 6 h accumulated precipitation is degraded by
the assimilation of MWR products, root-mean-square error and
correlation coefficient consistently show some positive impact
of the assimilation of MWR products in the first forecast
terms. The root-mean-square errors of all data assimilation
experiments outperform that of CTRL until about 18 h into
the forecast. Correlation coefficients essentially convey the same
information as the root-mean-square errors: the assimilation of
MWR products has generally a beneficial impact on forecasts up
to about 18 h. The larger differences in precipitation forecasts
may be explained by the fact that the verifying observations are
not assimilated in any of the four experiments. Also, precipitation
is highly nonlinear and small differences in other model variables
in the model initial state may lead to large differences in QPF.
Positive impact is not expected at long-term ranges because the
impact of the LBCs increases with forecast range.

Continuous verification statistics for precipitation accumula-
tions may reflect contrasted behaviours as they treat equally small

and large accumulations, whereas, for instance, a substantial bias
in small accumulations may be considered as negligible for large
accumulations. Categorical scores alleviate this issue by consid-
ering the ability of a model to forecast events that are defined
as functions of given thresholds in accumulation values. The
frequency bias (FBIAS) is the ratio of forecast events to observed
events. A perfect model would yield an FBIAS of 1, while a model
that forecasts too many (too few) events with respect to their
natural occurrence would yield an FBIAS larger (smaller) than 1.
The equitable threat score (ETS) reflects the number of correct
forecasts in excess to those that would verify by chance. A perfect
model would yield an ETS of 1, an unskilled model 0, and a
poor model −1/3. Since positive impact can be noticed up to
about 18 h, the FBIAS and ETS have been computed for 0 to 18 h
accumulated precipitation forecasts and are plotted in Figure 8.

All models share the same general features. The FBIAS decreases
with a linear trend from 1.1 to 1.2 for lower thresholds down to
about 1 for 100 mm. This means that the model tends to predict
more precipitation than observed up to 100 mm. Similarly, the
ETS decreases from values of 0.5 to 0.6 for lower thresholds
to values of 0.2–0.3 for 100 mm. This shows that the model is
the most skilful for lower precipitation accumulations and has
more difficulty predicting large precipitation amounts. A closer
inspection of Figure 8 shows that, DA Q and DA TQ are generally
close to CTRL below 10 mm. Above 10 mm, they are worse than
CTRL up to 100 mm (40–50 mm) in terms of FBIAS (ETS). They
are better above 40–50 mm in terms of ETS. DA T behaves sligthly
differently. It is worse than CTRL up to 70 mm and better above in
terms of FBIAS. For the ETS, DA T is generally worse than all the
other experiments below 10–20 mm and behaves like DA Q and
DA TQ above. It is thus concluded that the assimilation of MWR
data is moderately beneficial for larger precipitation amounts and
moderately detrimental for small precipitation amounts.

In order to illustrate how these statistics relate to the resulting
impact on specific events, a heavy-precipitation event was
chosen. It occurred in the first days of November 2011 and
was characterized by long-lasting heavy precipitation over the
Cévennes mountains which are located in the southeastern
part of the Massif Central, France. On these days, the large-
scale situation was dominated by a deep, cold upper-level
trough over the North Atlantic Ocean. This configuration
was associated with a mid-tropospheric southwesterly diffluent
wind over southeastern France. Near the surface, a cold front
was approaching southeastern France from the west. Over
southeastern France, ahead of the front, a southsoutheasterly
warm, moist, and strong wind prevailed with gusts in excess of
100 km h−1. Hally et al. (2013) give some more details about the
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Figure 8. (a) Frequency bias and (b) equitable threat score for 0–18 h accumulated precipitation forecasts against rain-gauges. The numbers of observations above
the thresholds are shown by grey solid lines.

meteorological situation of this case. The largest daily rainfall
accumulations occurred over the Cévennes on 3 November.
Figure 9 shows the distribution of these accumulations as observed
and simulated by the four experiments.

The largest observed accumulations are located over the
Cévennes along the south southwest to north northwestern
direction. A secondary peak is observed east of the largest rainfall
pattern. The largest daily accumulations exceed 350 mm locally
(one rain-gauge observation) and 250 mm over wider areas. The
secondary rainfall pattern is estimated to reach 100–150 mm by
radar observations, but this cannot be corroborated by rain-gauge
observations due to the sparseness of the surface network. All four
of the experiments succeed in simulating the main rainfall pattern,
albeit with different smaller-scale structures. The most notable
differences regarding this primary rainfall pattern appear at its
southern tip. The best experiments seem to be DA T and DA Q,
while CTRL and DA TQ seem to underestimate rainfall amounts
in this area, where the maximum accumulation of more than
350 mm was recorded by a rain gauge. The secondary pattern is
best forecast by CTRL and DA Q. However, there is too much
precipitation between the two patterns in CTRL. In this respect,
DA Q seems to perform best with accumulations very close to
that measured by rain gauges.

4.3. Radiosonde data-denial experiments

MWR retrievals of temperature and humidity retrievals give
essentially the same information as radiosonde data (excluding
wind direction and speed). The main differences between both
data sources are the time availability (radiosondes are launched
only once or twice a day), distribution of stations (30 radiosonde
launch sites versus 13 MWRs at possibly different locations in
this study), and quality (in situ data are of better quality than
remote-sensing data). As shown in Figure 2, several MWRs are
close to or colocated with radiosonde launch sites. In this section,
the possible redundancy of these two kinds of profile data is
investigated. For this, two additional experiments are performed.
The experiment hereafter referred to as CTRL−RS is the same as
CTRL, except that radiosonde data are not assimilated. Likewise,
DA TQ−RS is the same as DA TQ, but without assimilating
radiosonde data. Extensive verification statistics have been
computed for these two additional experiments. As found above,
there is only very limited, statistically insignificant, impact on the
short-term forecasts versus assimilated observations such as those

from automatic weather stations (not shown). This result also
holds true for radiosonde data. This means that the proximity
between all experiments cannot solely be attributed to the fact
that the verifying observations are assimilated, as proposed above.

As in the initial set of experiments, the greatest, statistically
significant, differences are found in QPF. Figure 10 shows that
removing radiosonde data improves the bias in 6 h accumulated
precipitation in the first 12 h, but then degrades it (compare
CTRL and CTRL−RS in (a)). In all other cases, assimilating
MWR products degrades the bias of 6 h accumulated precipitation
forecasts for all ranges. Regarding the root-mean-square error and
the correlation coefficient, removing radiosonde data degrades
these verification metrics for all forecast ranges. The benefit of
assimilating MWR data when radiosonde data are not assimilated
is more marked than when radiosonde data are assimilated, and
lasts up to more than 18 h.

FBIAS and ETS are plotted in Figure 11 for 18 h accumulated
precipitation. Assimilating MWR data in experiments without
radiosonde data generally degrades the FBIAS for all thresholds.
The same result was obtained when radiosonde data were
assimilated. It is also worth noting that assimilating radiosonde
data (compare CTRL with respect to CTRL−RS) degrades
the FBIAS beyond 50 mm. The consistent degradation in bias
observed when either radiosonde or MWR data are assimilated
could be attributed to errors in the model physics which are better
compensated when these data are not assimilated.

More conclusive results are obtained for the ETS. When
radiosonde data are not assimilated, the ETS skill score is
improved when MWR data are assimilated for all thresholds,
and the gain improves further with larger thresholds.

In short, the benefit of assimilating MWR data when radiosonde
data are not assimilated can be seen on QPF up to forecast ranges of
about 18 h in the root-mean-square error, correlation coefficient,
and ETS, but not in the bias and frequency bias whose degradation
may result from initial errors balanced with model errors in the
reference experiments.

5. Summary and discussion

Temperature and humidity retrievals from an international
network of 13 ground-based microwave radiometer network
were assimilated in a kilometre-scale NWP system. The study
spanned a period of 41 days encompassing a significant amount
of heavy-precipitation events in the western Mediterranean
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Figure 9. Rainfall accumulation (mm) over 24 h between 3 November 2011, 0600 UTC, and 4 November 2011, 0600 UTC as: (a) estimated by Météo-France radar
(colour shading) and rain-gauge (coloured squares) operational networks, and forecast by (b) CTRL, (c) DA T, (d) DA Q, and (e) DA TQ simulations initialized at
0000 UTC on 3 November 2011.
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Figure 10. As Figure 7 but for CTRL, DA TQ, CTRL−RS, DA TQ−RS.
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Figure 11. As Figure 8 but for CTRL, DA TQ, CTRL−RS, and DA TQ−RS.
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region. Comparisons between the retrieved temperature and
humidity and the model’s counterparts from a control run
showed reasonable agreement in general. Standard deviations
of differences between MWR products and the model were
comparable to those obtained with radiosondes. However, the
biases were found to be much larger.

The retrieved data were assimilated with a 3D-Var technique
in a 3 h rapid update cycle configuration. Three experiments were
performed which assessed the respective impact of the assimila-
tion of temperature retrievals, humidity retrievals, and tempera-
ture and humidity retrievals. Extensive verification was carried out
against upper-air observations as well as surface observations. On
average, little impact was found on analysed and predicted upper-
air and surface parameters, except on precipitation forecasts.
Continuous and categorical verification statistics on precipitation
forecasts yielded mixed results. While the bias was found to be
degraded up to 28 forecast hours when MWR data were assimi-
lated, the root-mean-square error and the correlation coefficient
were found to be mainly beneficial up to about 18 forecast hours.
When MWR data were assimilated, categorical scores on 0–18 h
accumulations generally showed a deterioration for the FBIAS.
The assimilation of MWR data generally degraded the ETS below
40 mm, but improved it above. A case of heavy precipitation illus-
trated to what extent the patterns of QPF vary when MWR data
are assimilated or not, and revealed distinctive differences in these
patterns compared to a radar quantitative precipitation estimate.
In two additional experiments based both on the control experi-
ment and on the experiment assimilating MWR data, radiosonde
data were not assimilated to avoid redundancy with nearby or
colocated MWR stations. Generally, a more marked improvement
was noticed when MWR data were assimilated. In particular, the
ETS was improved for all thresholds, and even more markedly
for larger thresholds. However, as when radiosonde data were
assimilated, the results were mixed in terms of bias and frequency
bias, which possibly points towards deficiencies in the model
physics.

Overall, this study has demonstrated that:

(i) MWR network data can be safely assimilated into
convective-scale NWP systems, and
(ii) the impact is generally neutral, although some improvements
have been noticed on QPFs up to forecast ranges of 18 h and for
larger rainfall accumulations.

The relatively low impact obtained in this study can be
attributed to the following reasons. First, the network used
in this study was quite sparse and inhomogeneous. For
instance, the Eumetnet GPS water vapour programme (E-GVAP;
http://egvap.dmi.dk/; accessed 11 July 2016) used in GPS ZTD
data assimilation studies is much denser (e.g. Yan et al., 2009b).
The MWR network was denser around the central Alps (more
than half of the stations), but, given the typical meteorological
situations associated with flash-flooding in the Mediterranean
coastal areas, those stations probably did not strongly impact the
forecasts of such events. It is expected that increasing the density of
the MWR network would increase the impact. Similar conclusions
were drawn from other data assimilation studies of sparse
observations (e.g. Hamill et al., 2013). The novel use of scanning
strategies for MWRs as proposed by Themens and Fabry (2014)
might also be useful to get more impact. Also, a lot of observations
were assimilated in addition to the MWR data, including those
from nearby or colocated radiosonde launch sites. As this study
showed that more positive impact was obtained when MWR data

were assimilated alone, the design of a MWR network should
aim at complementing the existing operational radiosounding
network to maximize its impact for data assimilation purposes.
Second, this study has pointed out some errors in the retrieved
humidity and temperature data. Removing these errors, and, more
generally, improving the quality of the data should also help obtain
more impact. The errors in MWR temperature and humidity
products are partly caused by indispensable, yet not necessarily
valid, assumptions in retrieval methods. The use of such
assumptions can be avoided by using a different approach in which
brightness temperature would be assimilated directly. However,
this necessitates a radiative transfer model calibrated for such a
use with its linear tangent operator and its adjoint. These tools
were not yet available at the time of this study, but are under active
development, in particular in the framework of the EU COST
Action TOPROF (TOwards operational ground-based PROFiling
with ceilometers, Doppler lidars and microwave radiometers for
improving weather forecasts, http://www.toprof.eu/; accessed 11
July 2016), a continuation of EG-CLIMET (European Ground-
based Observations of Essential Variables for Climate and
Operational Meteorology; Illingworth et al., 2015), which aims
at improving the quality of MWR data, among others. 1D-Var
retrievals of temperature from MWR brightness temperature
were found to outperform Arome very-short-term forecasts, and
thus demonstrated the potential benefit of such data assimilation
techniques (Martinet et al., 2015). In this study, the bias has
been computed over the whole period under investigation
and removed prior to the assimilation. Although the bias
appeared quite constant during the period under study, such
an approach would not be feasible in an operational context, and
the bias should be monitored to make sure that it is actually
constant. Finally, this work has focussed on the impact of MWR
data on deep-convection events, but the assimilation of such
data could be even more useful in other situations such as
fog events.
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The authors acknowledge Météo-France for supplying synoptic
surface observations data, José A. Guijarro from AEMET, the
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Cimini D, Hewison TJ, Martin L, Güldner J, Gaffard C, Marzano FS. 2006.
Temperature and humidity profile retrievals from ground-based microwave
radiometers during TUC. Meteorol. Z. 15: 45–56, doi: 10.1127/0941-
2948/2006/0099.

Cimini D, Campos E, Ware R, Albers S, Giuliani G, Oreamuno J, Joe
P, Koch SE, Cober S, Westwater E. 2011. Thermodynamic atmospheric
profiling during the 2010 winter olympics using ground-based microwave
radiometry. IEEE Trans. Geosci. Remote Sens. 49: 4959–4969, doi:
10.1109/TGRS.2011.2154337.
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Fourrié N, Bresson É, Nuret M, Jany C, Brousseau P, Doerenbecher A,
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O’Connor EJ, Ruffieux D. 2015. Exploiting existing ground-based remote
sensing networks to improve high-resolution weather forecasts. Bull. Am.
Meteorol. Soc. 96: 2107–2125, doi: 10.1175/bams-d-13-00283.1.

Kawabata T, Shoji Y, Seko H, Saito K. 2013. A numerical study on a mesoscale
convective system over a subtropical island with 4D-Var assimilation of GPS
slant total delays. J. Meteorol. Soc. Jpn. 91: 705–721, doi: 10.2151/jmsj.2013-
510.

Kawabata T, Iwai H, Seko H, Shoji Y, Saito K, Ishii S, Mizutani K. 2014.
Cloud-resolving 4D-Var assimilation of Doppler wind lidar data on a meso-
gamma-scale convective system. Mon. Weather Rev. 142: 4484–4498, doi:
10.1175/mwr-d-13-00362.1.

Lafore JP, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fischer C,
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Wattrelot É, Caumont O, Mahfouf JF. 2014. Operational implementation
of the 1D+3D-Var assimilation method of radar reflectivity data in the
AROME model. Mon. Weather Rev. 142: 1852–1873, doi: 10.1175/MWR-
D-13-00230.1.

Westwater ER. 1993. Ground-based microwave remote sensing of meteoro-
logical variables. In Atmospheric Remote Sensing by Microwave Radiometry,
Janssen MA. (ed.): 145–213. Wiley: New York, NY.

Westwater ER, Crewell S, Mätzler C. 2005. Surface-based microwave and
millimeter wave radiometric remote sensing of the troposphere: A tutorial.
IEEE Geosci. Remote Sens. Newslett. 134: 16–33.

Yan X, Ducrocq V, Jaubert G, Brousseau P, Poli P, Champollion C, Flamant
C, Boniface K. 2009a. The benefit of GPS zenith delay assimilation to
high-resolution quantitative precipitation forecasts: A case-study from
COPS IOP 9. Q. J. R. Meteorol. Soc. 135: 1788–1800, doi: 10.1002/
qj.508.

Yan X, Ducrocq V, Poli P, Hakam M, Jaubert G, Walpersdorf A. 2009b.
Impact of GPS zenith delay assimilation on convective-scale prediction
of Mediterranean heavy rainfall. J. Geophys. Res. 114: D03104, doi:
10.1029/2008JD011036.

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. 142: 2692–2704 (2016)


