

Atmospheric
Monitoring
with
Arduino

Patrick Di Justo and Emily Gertz

ISBN: 978-1-449-33814-5

[LSI]

Atmospheric Monitoring with Arduino
by Patrick Di Justo and Emily Gertz

Copyright © 2013 Patrick Di Justo, Emily Gertz. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://my.safaribooksonline.com). For more infor-
mation, contact our corporate/institutional sales department: 800-998-9938 or corpo
rate@oreilly.com.

Editors: Shawn Wallace and Brian Jepson
Production Editor: Kara Ebrahim
Proofreader: Kara Ebrahim
Cover Designer: Mark Paglietti
Interior Designer: David Futato
Illustrator: Rebecca Demarest

November 2012: First Edition

Revision History for the First Edition:

2012-11-19 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449338145 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trade-
marks of O’Reilly Media, Inc. Atmospheric Monitoring with Arduino and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and O’Reilly Me-
dia, Inc., was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449338145

We dedicate this book to our sisters and brothers:
Andy, Lucy, Mathius, and Melissa

Contents

Preface. vii

1/The World’s Shortest Electronics Primer. 1

What Is Arduino?. 1

Electronic Circuits and Components. 3

Programming Arduino. 5

First Sketch: Make an LED Blink. 6

Parts. 6

Install the IDE. 6

Breadboard the Circuit. 6

Write the Code. 8

Things to Try. 9

2/Gadget: Tropospheric Gas Detector. 11

How Gas Sensors Work. 13

Which Gases Can We Monitor?. 14

How This Gadget Works. 14

Transistorized!. 15

Build the Gadget. 16

Load the Sketch. 21

Displaying and Storing Your Data. 25

Liquid Crystal Displays. 25

Reading Data Off EEPROM. 26

Reading Data from an SD Card. 28

Things to Try. 28

Other Sensors. 28

Solar Powered. 28

GSM. 29

Do Not Deploy Your Gadget in Public Without Official Permission. 29

Get Official Permission. 30

Get Your Community Involved. 30

3/A Brief Introduction to LEDs. 33

v

What Is a Diode?. 33

What Is a Light Emitting Diode?. 34

How Are We Using LEDs in the LED Photometer?. 35

4/Gadget: LED Sensitivity Tester. 37

Mission: Inputtable. 37

Build the Gadget. 38

5/Gadget: LED Photometer. 51

Build the Gadget. 52

Load the Sketch. 54

Calibrate the Gadget: Air Mass, Atmospheric Optical Thickness, and
Extraterrestrial Constant. 59

Calculating Atmospheric Optical Thickness. 62

Things to Try. 64

Detecting “Ozone Holes”: Measuring the Ozone Layer. 64

Add an Accelerometer. 65

6/Using the LED Photometer. 67

Atmospheric Aerosols. 69

Photosynthetically Active Radiation (PAR). 70

Water Vapor (WV). 70

Extracting Data from the LED Photometer. 71

Graphing Data in a Spreadsheet. 71

Sending Data to COSM. 72

7/Doing Science: How to Learn More from Your Atmospheric Data. 73

The Scientific Method. 73

Steps in the Scientific Method. 74

Observe Something in the World. 74

Ask an Answerable Question. 75

Formulate a Hypothesis. 75

Compare the Predicted to Actual Results, Considering the Results. 75

Ask Another Question. 76

vi Contents

Preface

There’s a story (it’s either an old vaudeville joke
or a Zen koan) in which a fisherman asks a fish,
“What’s the water like down there?” and the
fish replies “What is water?” If the story is just
a joke, the point is to make us laugh; but if it’s
a koan, the point is that the most obvious and
ubiquitous parts of our immediate environ-
ment are, paradoxically, often the easiest to
overlook.
We as a species are probably a little bit smarter than fish: at least we know
that we spend our lives “swimming” at the bottom of an ocean of air. About
4/5th of that ocean is the relatively harmless gas nitrogen. Around another
1/5 of it is the highly reactive and slightly toxic gas oxygen. The Earth’s at-
mosphere also contains trace amounts of other harmless or slightly toxic
gases like argon, carbon dioxide, and methane. And depending on where you
live, it may contain even smaller, but much more toxic, amounts of pollutants
like soot, carbon monoxide, and ozone.

Yet how many of us, like the fish in the koan, overlook the atmosphere? Who
in your life can tell you the general composition of the air around them? How
many people know what’s inside every breath they take? Do you? Reading
this book and building these gadgets will take you on the first steps of a jour-
ney toward understanding our ocean of air.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file exten-
sions.

vii

Constant width
Used for program listings, as well as within paragraphs to refer to pro-
gram elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by val-
ues determined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes
code examples, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a program
that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does re-
quire permission. Answering a question by citing this book and quoting ex-
ample code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Atmospheric Monitoring
with Arduino by Patrick Di Justo and Emily Gertz (O’Reilly). Copyright 2013
Patrick Di Justo and Emily Gertz, 978-1-4493-3814-5.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

viii Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content

Technology professionals, software developers, web designers, and business
and creative professionals use Safari Books Online as their primary resource
for research, problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for
organizations, government agencies, and individuals. Subscribers have ac-
cess to thousands of books, training videos, and prepublication manuscripts
in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Mor-
gan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Man-
ning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and
dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
You can write to us at:

Maker Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Maker Media is a division of O’Reilly Media devoted entirely to the growing
community of resourceful people who believe that if you can imagine it, you
can make it. Consisting of Make magazine, Craft magazine, Maker Faire, as
well as the Hacks, Make:Projects, and DIY Science book series, Maker Media
encourages the Do-It-Yourself mentality by providing creative inspiration and
instruction.

For more information about Maker Media, visit us online:

MAKE: www.makezine.com
CRAFT: www.craftzine.com
Maker Faire: www.makerfaire.com
Hacks: www.hackszine.com

We have a web page for this book, where we list examples, errata, examples,
and plans for future editions. You can find this page at http://oreil.ly/
atmospheric-arduino.

To comment or ask technical questions about this book, send email to book
questions@oreilly.com.

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Preface ix

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://www.makezine.com
http://www.craftzine.com
http://www.makerfaire.com
http://www.hackszine.com
http://oreil.ly/atmospheric-arduino
http://oreil.ly/atmospheric-arduino
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

x Preface

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

1/The World’s Shortest
Electronics Primer

If you’re a DIY electronics or Arduino novice,
the information in this chapter will help you get
the most out of building and programming the
gadgets in this book.
If you’re already building your own electronics, consider this chapter a re-
fresher to dip into as needed.

What Is Arduino?
Arduino is best described as a single-board computer that is deliberately
designed to be used by people who are not experts in electronics, engineer-
ing, or programming. It is inexpensive, cross-platform (the Arduino software
runs on Windows, Mac OS X, and Linux), and easy to program. Both Arduino
hardware and software are open source and extensible.

Arduino is also powerful: despite its compact size, it has about as much
computing muscle as one of the original navigation computers from the
Apollo program, at about 1/35,000 the price.

Programmers, designers, do-it-yourselfers, and artists around the world take
advantage of Arduino’s power and simplicity to create all sorts of innovative
devices, including interactive sensors, artwork, and toys.

We built each of the products in this book using the Arduino Uno (Figure 1-1
and Figure 1-2), which, at the time of writing, is the latest model. By the time
you’re reading this, there may be something newer.

You don’t have to know Arduino Uno’s technical specifications to build and
program the gadgets in this book, but if you’re interested, you can find them
at the official Arduino website.

1

http://arduino.cc/en/Main/ArduinoBoardUno

Figure 1-1. Front of the Arduino Uno (Rev. 3).

Figure 1-2. Back of the Arduino Uno.

2 Atmospheric Monitoring with Arduino

Electronic Circuits and Components
An electronic circuit is, as the term implies, electricity moving in a path very
much like a circle. Each circuit has a beginning, a middle, and an end (which
is usually very close to where it began). Somewhere in the middle, the circuit
often runs through various electronic components that modify the electrical
current in some way.

Each device in this book is a circuit that combines Arduino with different
electronic components. Some of these manage the power and path of the
electricity, others sense certain conditions in the environment, and still oth-
ers display output about those conditions.

Let’s take a look at some of the components we will be using in our circuits:

Light emitting diodes (LEDs)
An LED is a lamp made of various rare-earth metals, which give off a
large amount of light when a tiny current is run through them. The com-
position of the substances within the LED determine the particular
wavelength of light emitted: you can buy green, blue, yellow, red, even
ultraviolet and infrared LEDs.

Technically, the LEDs used in our gadgets are “miniature LEDs,” tiny
lamps with two wire leads: one long (called the anode) and the other a
bit shorter (called the cathode). These come in various useful forms (in-
cluding single lamps from 2 mm to 8 mm in diameter, display bars, and
alphanumeric readouts) and can serve as indicators, illuminators, or
even data transmitters.

You’ll learn how to use these different types of LEDs while building the
different environmental sensors in this book.

Resistors
Resistors are the workhorses of the electronics world. What do resistors
do? They simply resist letting electricity flow through by being made of
materials that naturally conduct electricity poorly. In this way, resistors
serve as small dumb regulators to cut down the intensity of electric cur-
rent.

Resistance is valuable because some electronic components are very
delicate: they burn out easily if they’re powered with too much current.
Putting a resistor in the circuit ensures that only the proper amount of
electricity reaches the component. It’s hard to imagine any circuit work-
ing without a resistor, and with LEDs, resistors are almost mandatory.

While building the projects in this book, you’ll learn various creative ways
to regulate current with resistors.

The World’s Shortest Electronics Primer 3

Soldering
Soldering involves heating up conductive metal, called solder, and then
using it to fuse other pieces of metal together. In small-scale electronics,
we use an electrical tool called a soldering iron, which has a small tip, to
heat up thin wires of solder and drip the solder onto the components we
wish to join into the circuit.

Soldering creates a very stable circuit, and that stability can be a draw-
back. Fusing together components can make it difficult to reuse or re-
configure circuits. You also must be very careful to not short-circuit
components while soldering. Knowing how to solder can be a very useful
skill in DIY electronics. If you’re interested in learning how, this online
resource is a good place to start.

The alternative to soldering is to use a solderless breadboard.

Solderless breadboards
Solderless breadboards are small plastic boards studded with pins that
can hold wires (more about these next). These wires can then be con-
nected to other electronic components, including Arduino.

Solderless breadboards make it much easier to design circuits, because
they allow you to quickly try out various assemblies and components
without having to solder the pieces together. While solderless bread-
boards typically are intended for use only in the design phase, many
hobbyists keep a breadboard in the final version of a device because
they’re so fast and easy to use.

If you don’t feel like soldering circuit boards, solderless breadboards are
the way to go. Each gadget in this book uses a solderless breadboard.

Wire
Wire is the most basic electronic component, creating the path along
which electrons move through a circuit. The projects in this book use
1 mm “jumper wires,” which have solid metal tips perfectly sized to fit
into Arduino and breadboard pins, and come sheathed in various colors
of insulation.

Get as much jumper wire as you can afford, in several colors.
When building circuits with Arduino, you can’t have too many
jumper wires.

4 Atmospheric Monitoring with Arduino

http://mightyohm.com/files/soldercomic/FullSolderComic_20110409.pdf
http://mightyohm.com/files/soldercomic/FullSolderComic_20110409.pdf

We order most of our electronics components from these online retailers:

• Adafruit Industries

• Eemartee

• Electronic Goldmine

• SparkFun

Maker Shed, from MAKE and O’Reilly Media, sells books, kits, and tools, as
well as many of the components needed to build the projects in this book
including Arduino, breadboards, sensors, and basic electronic components.
Maker Shed also supplies convenient bundles for many of the projects in this
book (you can find more information about these bundles in the individual
project chapters).

Don’t count out your friendly local RadioShack, though. While writing this
book, more than once we ran out to RadioShack for a last-minute compo-
nent.

For years RadioShack cut back on its electronic components inventory, ap-
parently seeing a better future for the business by featuring cell phones and
other consumer electronics. But the company has recently begun to em-
brace the maker movement; at the time of writing, most of their stores
around the country are even carrying Arduinos. We’re hopeful RadioShack
is on the return path to being the hacker heaven it was years ago.

Programming Arduino
A computer program is a coded series of instructions that tells the computer
what to do. The programs that run on Arduino are called sketches.

The sketches used in this book mostly tell Arduino to read data from one of
the pins, such as the one connected to a sensor, and to write information to
a different pin, such as the pin connected to an LED or display unit.

Sometimes the sketches also instruct Arduino to process that information
in a certain way: to combine data streams, or compare the input with some
reference, or even place the data into a readable format.

An Arduino program has two parts: setup() and loop().

setup()
The setup() part tells Arduino what it needs to know in order to do what
we want it to do. For example, setup() tells Arduino which pins it needs
to configure as input, which pins to configure as output, and which pins
won’t be doing much of anything. If we’re going to use a special type of
output to show our results, such as an LCD display, setup() is where we

The World’s Shortest Electronics Primer 5

http://adafruit.com
http://www.emartee.com
http://www.goldmine-elec.com
http://www.sparkfun.com
http://www.radioshack.com

tell Arduino how that output works. If we need to communicate with the
outside world through a serial port or an ethernet connection, setup()
is where we put all the instructions necessary to make that connection
work.

loop()
loop() tells Arduino what to do with the input or output. Arduino runs
the instructions in loop(), then goes back to the top of loop() and runs
them again. And again. And again. loop() continues to loop as long as
the Arduino has power.

First Sketch: Make an LED Blink
By long tradition (going back to 2006), the first Arduino sketch you will write
is to make an LED blink.

Arduino pins can be used for input and output, as long as you tell the com-
puter which is which. So in this sketch, we tell the Arduino to set pin 13 to be
the LED OUTPUT pin, and then we alternately send electricity to pin 13 (set-
ting the pin HIGH) and cut off the electricity to pin 13 (setting the pin LOW).
With each alternation, the LED turns on and off.

We’ll write all the sketches in this book using the Arduino integrated devel-
opment environment (IDE), which, simply put, is special software for writing
and uploading code to Arduino.

Parts
1. Arduino Uno

2. Breadboard

3. LED

Install the IDE
Download the Arduino IDE, and follow the provided instructions to install it
on your computer.

Once you’ve installed the software, open the IDE. You should see a screen
that looks something like Figure 1-3.

Breadboard the Circuit
The circuit portion of this project is very simple: take an LED and place the
long lead into pin 13 on Arduino, as you can see in the Figure 1-4 breadboard
view.

6 Atmospheric Monitoring with Arduino

http://arduino.cc/en/Main/Software

Figure 1-3. The Arduino IDE on a Mac.

Figure 1-4. LED long lead inserted into pin 13 on the Arduino (image made
with Fritzing).

The World’s Shortest Electronics Primer 7

http://fritzing.org

Write the Code
You can find this code in the Arduino IDE under File → Examples or on the
EMWA GitHub Repository → chapter-1 → blink.

/*
 Blink
 Turns on an LED for one second,
 then off for one second, repeatedly.
 This example code is based on example code
 that is in the public domain.
*/

void setup() {
 // initialize the digital pin as an output.
 // Pin 13 has an LED connected on most Arduino boards:
 pinMode(13, OUTPUT);
}

void loop() {
 digitalWrite(13, HIGH); // set the LED on
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // set the LED off
 delay(1000); // wait for a second
}

Normally, you’d need to put a resistor in between the power
source and the LED, so as not to burn out the LED. Arduino
Unos (and later models) have a resistor built into pin 13, so
that’s taken care of.

In this sketch, the code in loop() simply tells Arduino to set pin 13 HIGH—
taking it up to 5 volts—for 1,000 milliseconds (one second), followed by set-
ting it LOW—taking it down to 0 volts—for another 1,000 milliseconds.

Do you notice the /* … */ sections and the // lines in the example above?
Those are ways to put comments into your code to explain to others (and to
yourself) what the code does:

• /* and */ tell the computer that everything between those marks should
be ignored while running the program.

8 Atmospheric Monitoring with Arduino

https://github.com/ejgertz/EMWA/blob/master/chapter-1/blink

• // tells the computer that everything afterward on that line is a com-
ment.

Why Comment Code?
Commenting code simply means adding explanations in plain English to your
sketch that describe how the code works. Adding comments to code is a very
good idea. Here’s why:

Suppose, after hours trying to get your Arduino to do something, the solution
suddenly comes to you. Eureka! You hook up your Arduino, bang out your
code, load it up, and voilà: it works.

Fast forward: months later, working on another project, you want your Ardu-
ino to do something similar to your earlier project. “No sweat, I’ll just reuse
my earlier code,” you think. But you open up the sketch and … none of it makes
sense!

You wrote that earlier code in a highly creative state of mind, when your brain
chemicals were flowing like a river and your ideas were flashing like summer
lightning. In all the excitement, you didn’t comment your code. So now,
months later, when you’re in a completely different state of mind, you can’t
remember what the code does, and you have to start all over. Is that any way
to live?

If you had commented your code from the beginning, you’d know exactly
what each variable was used for, what each function did, and what each pin
controlled. Your life would be so much more enjoyable.

In short, always take a few minutes to comment your code.

Things to Try
Modify this sketch to make the LED do something different:

1. Blink twice as quickly.

2. Blink twice as slowly.

3. Light up for half a second with a 2-second pause between blinks.

Congratulations, you’re an Arduino programmer! Now let’s have some real
fun.

The World’s Shortest Electronics Primer 9

2/Gadget:
Tropospheric Gas

Detector

We can easily go several hours without drinking
water. We can comfortably go the better part
of a day without eating food. But try and go
more than a few minutes without breathing.
(No, don’t really try.) Understanding the com-
position of the lower atmosphere—the tropo-
sphere—is among the most important envi-
ronmental measurements we can take.
Everything floating around the troposphere—nitrogen, oxygen, carbon diox-
ide, water vapor, and all sorts of pollution—winds up in our lungs, on our
plants, in our food, and in our water (see Figure 2-1). It dusts our windows,
our automobiles, and our buildings. For this reason, the authors (as well as
organizations like the American Lung Association) believe that it’s vitally im-
portant to know what’s inside every breath we take.

In the old days, when people wanted to know what was in the atmosphere,
they used chemically-treated filter paper, and hung it in a breeze. The chem-
icals reacted with whatever was in the air and would respond by changing
color. Or they bubbled the atmosphere through water and measured the dif-
ferent compounds that resulted as gas dissolved in water. This kind of work
could only be performed in a dedicated chemistry lab.

11

http://www.lung.org/

Figure 2-1. This illustration shows how different chemicals and other sub-
stances move into and through the troposphere. Credit: U.S. Climate
Change Science Program, 2003.

Fortunately for us, we can now purchase a small, complete atmospheric lab-
oratory for less than $10, in the form of an electronic gas sensor (Figure 2-2).
These sensors detect different substances in the atmosphere by measuring
the changing resistance of a film made of tin dioxide.

12 Atmospheric Monitoring with Arduino

Figure 2-2. There are lots of inexpensive sensors on the market that can be
used for DIY monitoring.

How Gas Sensors Work
Oxygen in the atmosphere removes electrons from the tin dioxide film, which
decreases its conductivity (and increases its resistance). When other types
of gases, particularly those that are chemically reducing, touch the tin dioxide
film, electrons are injected into the material. This increases the conductivity
(and lowers the resistance) of the tin dioxide layer. You can use your Arduino
to measure that change in resistance.

It’s important to keep in mind that tin dioxide sensors tend to be broadly
selective. While certain sensors may be marketed as being “alcohol” sensors
or “carbon monoxide” sensors, they actually respond to more than just al-
cohol or carbon monoxide, respectively; they respond to a wide family of

Gadget: Tropospheric Gas Detector 13

similar gases. Manufacturers can make the tin dioxide-based gas sensors
more selective by adding various catalysts into the sensor head, or by using
external filters. The datasheet provided with each sensor explains more
completely how to adjust the sensitivity of each sensor for various gases.

Which Gases Can We Monitor?
There are electronic sensors for a wide range of gases. As we write this book
in the summer of 2012, there are easy-to-use inexpensive sensors on the
market to detect carbon monoxide, carbon dioxide, liquid petroleum gas,
butane, propane, methane (natural gas), hydrogen, ethyl alcohol, benzene,
volatile organic compounds, ammonia, ozone, hydrogen sulfide, and more.
It’s not unreasonable to expect that it won’t be long before cheap sensors hit
the market that can detect nitrogen oxides and other contaminants. All of
these gases count as pollutants; in varying concentrations, all of them can
be harmful.

How This Gadget Works
We’re going to use the MQ-2 and MQ-6 sensors from Hanwei, Inc. in this
gadget. Both detect combustible gases: the MQ-6 detects butane and liq-
uefied petroleum gas (LPG), also called propane (both hydrocarbons), while
the MQ-2 is sensitive to LPG, methane (the primary component of natural
gas, and a potent greenhouse gas), and smoke. We feel that both sensors
together are a great way to start measuring ground-level air pollution.

What Is Smoke?
Smoke, for our purposes, is defined as a byproduct of incompletely burned
carbon-based fuel. It includes solid and liquid particulate matter (otherwise
known as soot), as well as some gaseous remnants of the original fuel mixed
with air. Hanwei’s datasheet for the MQ-2 does not specify what “smoke”
means for this sensor. But since we know that the MQ-2 detects certain hy-
drocarbon gases, we’re assuming that the smoke it detects is also
hydrocarbon-based: a component of automobile or truck exhaust, or the
burning of natural gas.

A heating element in the electronic circuit heats the metal, making it more
reactive with atmospheric gases. As the various gases react with the metal,
the resistance changes in proportion to the amount of that gas present in the
air exposed to the sensor. This change in resistance is measured by the Ar-
duino analog port. That’s basically it.

If we plug the heater directly into Arduino, we find ourselves with a problem.
The heater consumes 800 mW, which works out to equal 200 mA (.8 W / 5

14 Atmospheric Monitoring with Arduino

V = .2 A). A standard Arduino pin can only reliably source 20 mA (in other
words, only about 10% of the power the heater needs). We have correspond-
ence from the manufacturers indicating that the heater can be powered by
connecting it to the +5 V Arduino pin, but frankly, we’re skeptical. We’ve got
to come up with a way to use Arduino to control the amount of power that
goes to the heating units, so that the heating unit is not on constantly, without
actually having Arduino provide that power.

Both these problems—providing power to the heater and controlling that
power—have a single solution, probably the greatest invention of the 20th
century: the transistor.

Transistorized!
Transistors are used to amplify electronic signals cheaply and efficiently, with
very little noise, while giving off very little heat (Figure 2-3). Transistors also
act as tiny, efficient digital switches. Since all computer activity breaks down
into a series of binary “on and off” states represented by 1s and 0s, transis-
tors by the millions, embedded into a silicon chip, control those on and off
signals.

We really can’t overstate the importance of the transistor. We don’t have
room in this book to discuss the details of how transistors work; suffice it to
say that the lightweight, cheap electronic gadgets in our lives—handheld cell
phones, computers, digital cameras, flat screen TVs, microwave ovens, cable
television, touchtone phones, simple portable AM/FM radios, essentially
anything more complicated than a flashlight—would be impossible without
the transistor.

Figure 2-3. Various transistors. Source: Ulf Seifert.

Gadget: Tropospheric Gas Detector 15

The first thing you notice when you look at a transistor is that unlike almost
every other electronic device we’ve seen so far, a transistor has three termi-
nals. We can control the voltage between two of the terminals by applying a
specific electric current or voltage to the third terminal. The three terminals
are the base, the collector, and the emitter. The base is the controller; voltage
applied here determines whether or not electricity flows from the collector
to the emitter. The collector is the “source” of the electrical current, and the
emitter is the output.

If we were to send varying levels of current from the base, we can regulate
the amount of current flowing from the collector to the emitter. This is how
a transistor acts as an amplifier: a very low signal coming into the base is
repeated at a much larger voltage provided by the collector.

When we use a transistor as a switch, the circuitry is even simpler. A transistor
switch is either fully on or fully off. A small data signal to the base determines
whether the transistor is switched on or off. When it is switched on, current
flows between the ground and the collector. This simple setup lets us use
Arduino to turn on components that have a separate power supply.

Build the Gadget
Amount Part Type Properties/(Assembly Code)

2 1 k Ω resistor Package THT; tolerance 5%; bands 4; resistance
1 k Ω; pin spacing 400 mil (R1 & R2)

1 Voltage regulator, 5 V Package TO220 [THT]; voltage 5 V (U1)

2 NPN-transistor Package TO92 [THT]; type NPN (Q1 & Q2)

1 Arduino UNO R3 (Arduino1)

1 LCD screen Character type, 16 pins (LCD1)

1 Battery block 9 V (VCC1)

1. Connect a wire from the GND pin of Arduino to the GND rail of the bread-
board. Connect the GND rail of the breadboard to the EMITTER pin of
the transistor (Figure 2-4).

2. Connect the BASE pin of the transistor to a 1 K resistor, and connect the
resistor to an Arduino digital pin (Figure 2-5).

16 Atmospheric Monitoring with Arduino

Figure 2-4. Step one. Source: these images were created with Fritzing.

Figure 2-5. Step two.

Gadget: Tropospheric Gas Detector 17

http://fritzing.org

3. Connect the COLLECTOR pin of the transistor to the GND pin of the
sensor (Figure 2-6).

Figure 2-6. Step three.

4. Connect the +5 (VCC) sensor pins to the breadboard’s power rail
(Figure 2-7). Don’t worry; we’re going to add a power supply later.

5. Connect the data lines from the sensors to Arduino analog ports 4 and
5 (Figure 2-8).

18 Atmospheric Monitoring with Arduino

Figure 2-7. Step four.

Figure 2-8. Step five.

Gadget: Tropospheric Gas Detector 19

6. Connect the 7805 +5 VDC voltage regulator. This regulates the voltage
coming from your independent power source for the sensor heaters.
Like the transistor, the voltage regulator also has three terminals: a cen-
ter pin goes to GND, the pin on the left is input, and the pin on the right
is output (Figure 2-9).

Figure 2-9. Step six.

7. Connect the GND pin to the GND rail of the breadboard AND to the black
(or –) wire on your power supply. Connect the input pin to the red (or +)
wire on your power supply. Connect the output pin to the power rail on
the breadboard (Figure 2-10).

20 Atmospheric Monitoring with Arduino

Figure 2-10. Step seven.

This device takes an input current (up to 35 volts), and changes it to a stable,
fixed +5 VDC. In our example, we’re using a standard 9 volt battery at the
current source, but you can use just about anything: a 6 volt lantern battery,
two 3.7 volt lithium polymer batteries connected in series, even a bunch of
AA batteries. The total capacity of your power source should be your main
determining factor: smaller batteries generally provide fewer amp-hours,
meaning that the lifespan of your gadget can be cut short if you run out of
power.

Don’t connect the battery until you actually need it, or add an ON-OFF switch
to power it up when you’re ready to start taking readings.

Optionally, connect the LCD. The data line is Arduino pin 2,
ground goes to GND, and the power supply is Arduino’s 3.3 V
pin.

Load the Sketch
You can find this sketch in the AMWA GitHub repository.

#include <SoftwareSerial.h>
#include <SD.h>
#include <EEPROM.h>
#include<stdlib.h>

// Liquid Crystal Display

Gadget: Tropospheric Gas Detector 21

https://github.com/ejgertz/AMWA

// Define the LCD pins: We'll be using a serial-based LCD display
// which only required +3.3Volts, GND, and a single data line.
// databuff and displaybuff hold the data to be displayed
#define LCDIn 2
#define LCDOut 5
SoftwareSerial mySerialPort(LCDIn, LCDOut);

// Data Buffers for the LCD
char databuff1[16];
char databuff2[16];
char dispbuff[16];

// GAS SENSORS
// Analog input pin that reads the first gas sensor
const int gasPin1 = A5;

// Analog input pin that reads the gas sensor
const int gasPin2 = A4;

// The digital pin that controls the heater of gas sensor 1
const int heaterPin1 = 7;

// The digital pin that controls the heater of gas sensor 2
const int heaterPin2 = 9;

// LED connected to digital pin 13
const int ledPin = 13;

// value read from the sensor A5
int gasVal1 = 0;

// value read from the sensor A4
int gasVal2 = 0;

long warmup = 180000; // enter time for heaters to warmup, in
milliseconds.
// 180,000 milliseconds = 3 minutes

long downtime = 360000; // enter delay between readings, in
milliseconds.
// 360,000 milli seconds = 6 minutes

//EEPROM records require two bytes to store a 1024 bit value.
//Each gas sensor returns a value from 0-1024, taking 2 bytes.
//To store gas sensor data would require a record index,
//plus two bytes for the first gas sensor, two bytes for the second gas
sensor
//For a total of five bytes per record.

// current EEPROM address
int addr =0;

//EEPROM record number
int record = 0;

22 Atmospheric Monitoring with Arduino

//EEPROM record length
int reclen = 5;

//switch to tell if an SD card is present
int SDPresent = 1;

void setup()
{
 // initialize serial communications at 9600 bps:
 Serial.begin(9600);

 pinMode(heaterPin1, OUTPUT); // sets the digital pins as output
 pinMode(heaterPin2, OUTPUT);
 pinMode(LCDOut, OUTPUT);

 //reset the LCD
 mySerialPort.begin(9600);
 mySerialPort.write(0xFE);
 mySerialPort.write(0x01);
 sprintf(databuff1,"Wakeup Test");
 sprintf(dispbuff,"%-16s",databuff1);
 mySerialPort.print(dispbuff);

 // Set up SD card, let us know if SD card is absent
 pinMode(10, OUTPUT);
 if (!SD.begin(4))
 {
 SDPresent =0;
 sprintf(databuff2,"NO SD CARD!!!");
 sprintf(dispbuff,"%-16s",databuff2);
 mySerialPort.print(dispbuff);
 Serial.println("NO SD CARD!!!");
 delay(6000);
 }
 delay(3333);
}

void loop()
{
 long scratch=0; // scratch variable

 // set the timer
 unsigned long counter = millis();

 //turn first heater on
 digitalWrite(heaterPin1, HIGH);

 // wait 3 minutes for heater to heat up
 while(millis() < (counter + warmup))
 {
 sprintf(databuff1,"Unit1 Activated");
 sprintf(dispbuff,"%-16s",databuff1);
 mySerialPort.print(dispbuff);

Gadget: Tropospheric Gas Detector 23

 scratch = (int)((counter+warmup - millis())/1000);
 sprintf(databuff2,"Countdown: %3d", scratch);
 sprintf(dispbuff,"%-16s",databuff2);
 mySerialPort.print(dispbuff);

 Serial.println(scratch);
 }

 // read the analog in value:
 gasVal1 = analogRead(gasPin1);
 sprintf(databuff1,"read unit 1");
 sprintf(dispbuff,"%-16s",databuff1);
 mySerialPort.print(dispbuff);

 // shut off the first heater
 digitalWrite(heaterPin1, LOW);

 //turn second heater on
 digitalWrite(heaterPin2, HIGH);
 sprintf(databuff2,"turning on unit2");
 sprintf(dispbuff,"%-16s",databuff2);
 mySerialPort.print(dispbuff);

 // wait 3 minutes for heater to heat up
 while(millis() < (counter + warmup + warmup))
 {
 sprintf(databuff1,"Unit2 Activated");
 sprintf(dispbuff,"%-16s",databuff1);
 mySerialPort.print(dispbuff);

 scratch = (int)((counter+warmup+warmup - millis())/1000);
 sprintf(databuff2,"Countdown: %3d", scratch);
 sprintf(dispbuff,"%-16s",databuff2);
 mySerialPort.print(dispbuff);

 Serial.println(scratch);
 }

 // read the analog in value:
 gasVal2 = analogRead(gasPin2);
 sprintf(databuff2,"reading unit2");
 sprintf(dispbuff,"%-16s",databuff2);
 mySerialPort.print(dispbuff);

 // shut off the second heater
 digitalWrite(heaterPin2, LOW);

 //Display on LCD
 sprintf(databuff1,"Gas1:%4d",gasVal1);
 sprintf(dispbuff,"%-16s",databuff1);
 mySerialPort.print(dispbuff);
 sprintf(databuff2,"Gas2:%4d",gasVal2);
 sprintf(dispbuff,"%-16s",databuff2);
 mySerialPort.print(dispbuff);

24 Atmospheric Monitoring with Arduino

//write to SD card
 if(SDPresent = 1)
 {
 writeDataToSD(databuff1, databuff2);
 }

 //Wait downtime and start again
 //to make more frequent measurements, change value of downtime
 while(millis() < (counter +downtime))
 {
 }
}

void writeDataToSD(String dataString1, String dataString2)
{
 // open the file. note that only one file can be open at a time,
 // so you have to close this one before opening another.
 File dataFile = SD.open("datalog.txt", FILE_WRITE);

 // if the file is available, write to it:
 if (dataFile)
 {
 Serial.println("Hooray, we have a file!");
 dataFile.print(millis());
 dataFile.print(",");
 dataFile.print(dataString1);
 dataFile.print(",");
 dataFile.println(dataString2);

 dataFile.close();

 // print to the serial port too:
 Serial.print(millis());
 Serial.print(",");
 Serial.print(dataString1);
 Serial.print(",");
 Serial.println(dataString2);

 //Print to LCD
 mySerialPort.print("Datafile written");
 }
}

Displaying and Storing Your Data
You can connect Arduino to components that display data, as well as those
that store data for later use.

Liquid Crystal Displays
Liquid crystal displays (LCDs) are cheap and easy ways to display data, sta-
tus, warnings, and other messages from Arduino. They come in many
different colors: you can buy LCDs with amber characters on a black back-

Gadget: Tropospheric Gas Detector 25

ground, black characters on a green background, yellow characters on a blue
background, and other color combinations. Some LCDs have two rows of 16
characters, others four rows of 20 characters, and other display combina-
tions are available as well. But for our uses, the biggest differences in LCDs
involve the way they handle data.

The most basic (and least expensive) LCDs make you do all the data handling.
They can take up as many as 10 digital data pins (most Arduinos only have
13), and might even require you to design your own characters. Some makers
love doing stuff like that, but others just want to plug in a device and have it
work.

For our uses, we’ve decided to go with a serial-controlled LCD, one in which
a small microprocessor attached to the LCD takes care of all the data and
character management. It’s more expensive, but also much easier to use. All
we need to do is ground the device, give it some power, and feed it data.

Step seven of the build explains how to connect the LCD to the tropospheric
gas detector.

Reading Data Off EEPROM
You might have noticed in the code that Arduino writes the data it recieves
to something called EEPROM. This stands for “Electrically Erasable Pro-
grammable Read-Only Memory.” This is a type of computer memory that is
nonvolatile; it remains in place after Arduino is powered down, or after a new
program is loaded. EEPROM is perfect for storing data that has to last a long
time (a long time by Arduino standards, that is), such as months or years.
Our gadget uses 5 bytes of EEPROM to store a single observation record: 1
byte for the record number, and 2 bytes apiece for each sensor’s data.

We’ve included a small program to extract tropospheric gas data from the
Arduino’s EEPROM. Simply connect your Arduino to your computer via the
USB cable, upload the following sketch, and then view the serial monitor.

#include <EEPROM.h>

// start reading from the first byte (address 0) of the EEPROM

int address = 1;
int record = 0;
unsigned int Sensor1 = 0;
unsigned int Sensor2 = 0;

int q;
int m;

void setup()
{
 Serial.begin(9600);
 Serial.println("Record#, Sensor1, Sensor2");

26 Atmospheric Monitoring with Arduino

 for(int i =0; i<=95; i++)
 {
 readData();
 }
}

void loop()
{
 // There's no need for this program to loop. We know what we want to do,
 // and we just did it in setup().
}

void readData()
{
 record = EEPROM.read(address++);
 Serial.print(record);
 Serial.print(",");
 q = EEPROM.read(address++);
 delay(20);
 m = EEPROM.read(address++);
 delay(20);
 Sensor1 = (q*256)+m;

 Serial.print(Sensor1);
 Serial.print(",");
 q = EEPROM.read(address++);
 delay(20);
 m = EEPROM.read(address++);
 delay(20);
 Sensor2 = (q*256)+m;

 Serial.print(Sensor2);
 Serial.print(",");
 q = EEPROM.read(address++);
 delay(20);
 m = EEPROM.read(address++);
 delay(20);

 }

The result is a CSV display of your data, ready to be copied and pasted into
your favorite spreadsheet program.

The Limits of EEPROM
EEPROM is not limitless. The Arduino Duemilanove and Uno each have a sin-
gle kilobyte of EEPROM available, which (at 5 bytes per observation record)
will hold about 200 observations worth of data. At 5 observations per hour,
that’s enough for more than a day and a half of solid observation. Arduino
Megas have 4 kilobytes of EEPROM, about enough to hold a week’s worth of
atmospheric data. The old Arduino NGs, Nanos, and Diecimilas have a paltry
512 bytes of EEPROM, about 20 hours’ worth.

Gadget: Tropospheric Gas Detector 27

What do you do when your EEPROM is full? The Arduino IDE has a sketch
called EEPROM_Clear. Simply run that, and it will wipe your Arduino’s non-
volatile memory and make it ready for the next season’s worth of data. Of
course, you will have already backed up your data to a spreadsheet, a hard
drive, an SD card, or Cosm before you wipe your EEPROM, right?

Reading Data from an SD Card
If you are storing your gas detector data on the SD card, you’ll find a file called
DATALOG.TXT. That file contains your measurements in CSV (comma sepa-
rated value) format. To save space on Arduino, we did not massage the data
in any way. You can open this file in your favorite spreadsheet program and
work with it as desired.

Things to Try
Of course, there’s not just one way to build a gas detector. There are many
different configurations you can try (such as more or different sensors) that
will provide more detailed data, but what changes (if any) will you have to
make to the circuit to be sure it works properly? Will you need to beef up the
batteries, or try a totally new power source? Here are some other ideas to
make your gas detector more versatile.

Other Sensors
Does hot humid air hold more pollution than cold dry air? If you add a tem-
perature/humidity sensor to the gadget, can you detect any correlations be-
tween temperature/humidity and toxic gas concentration?

As we noted earlier, Hanwei and other manufacturers offer many different
gas sensors, often (but not always) built around the same basic circuitry,
making it relatively easy to add more sensors to a gadget, or swap new sen-
sors for old ones. It might be interesting to add an MQ-131 ozone sensor to
the MQ-2 and MQ-6 sensors—is there a correlation between automobile pol-
lution and ozone? between temperature/humidity and ozone?

Solar Powered
One drawback to the current gadget is the batteries last only a few days. Is
it possible to have the gadget work forever by powering it with the sun?

Yes, with some caveats. The heating elements of the gas sensors are real
power hogs, and running this device totally on solar power might or might
not be practical depending on the size of the solar panel, the amount of

28 Atmospheric Monitoring with Arduino

sunlight at your location, and the number of gas sensors you have. If you want
to give it a try, we’d recommend starting with something like the Adafruit
USB/SOLAR LiPoly charger. This device will handle all the power manage-
ment for you.

The key question is the size of the solar panel: if you calculate the amount of
power your Arduino and sensors use, and compare it to the net power you
can expect from the solar panel/charger (taking into account your location
and time of year), you can get a good idea if solar will work for your gadget.

GSM
Wouldn’t it be great if, instead of having to fetch data from your gadget, you
could make your gadget send you its data? You can, with a GSM module. This
device, available from all the usual suppliers like Sparkfun and Adafruit, is
essentially the guts of a cell phone without the keypad, display, speaker, mi-
crophone, or ringtones. By connecting it in place of (or along with) the LCD
display, you can have your gadget send you text messages (or even post on
Twitter!) its latest findings. You’ll need to get a separate SIM card with a data
plan, but these usually cost in the range of $5 to $10 per month.

Do Not Deploy Your Gadget in Public
Without Official Permission
Now we come to the strangest part of this book: the warning not to leave your
gas detector unattended, anywhere, ever. Here’s why:

In May 2012, Takeshi Miyakawa, a visual artist and furniture designer in New
York City, placed a portable battery-powered light inside a translucent “I Love
NY” plastic shopping bag, and hung it from a metal rod attached to a tree.
When the lamp was on, the bag glowed from within. A friend of the artist said
he did this “to lift people’s spirits. He was simply trying to say that he loves
the city and spread that attitude around.”

Unfortunately for Miyakawa, someone in the neighborhood saw a contrap-
tion with wires, batteries, and plastic boxes and called the New York Police
Department’s bomb squad, which evacuated the area and took two hours to
determine that a battery and a light was just a battery and a light. When the
police tracked the device to Miyakawa, they arrested him and charged him
with two counts of first-degree reckless endangerment, two counts of placing
a false bomb or hazardous substance in the first degree, two counts of placing
a false bomb or hazardous substance in the second degree, two counts of
second-degree reckless endangerment, and two counts of second-degree
criminal nuisance. A judge ordered him sent to Bellevue hospital for psychi-
atric evaluation, as well.

All for hanging a light in a tree.

Gadget: Tropospheric Gas Detector 29

http://ladyada.net/products/usbdcsolarlipo/
http://ladyada.net/products/usbdcsolarlipo/

Miyakawa’s experience is not unique, unfortunately. In another case, re-
searchers from Carnegie-Mellon University built similar detectors to ours,
and placed them at various points around the Pittsburgh area. While the
sensors were enclosed in professionally made plastic cases, and were clearly
labeled as an approved research project, once again the police bomb squad
was called. (The students didn’t report being arrested. However, they did say
it took a great deal of negotiation with the authorities to get their equipment
back.)

The US Department of Homeland Security (DHS) urges people to “be vigi-
lant, take notice of your surroundings, and report suspicious items or
activities to local authorities immediately.” As a result, homemade electronic
gadgets that once upon a time (at least, in the lifetimes of the authors) might
have been regarded as interesting curiosities are now treated as threats.
Many people don’t understand hobby electronics, and are frightened by what
they do not understand. Police believe they must treat every suspicious
package as if it may be harmful.

The point of telling you all this is not to scare you from building monitoring
devices, but to warn you that a home-built, Arduino-based gas sensor might,
to the unknowing eye, look like a box of batteries and wires and a scary thing
with blinking lights. Leaving something like this unattended, without permis-
sion, on property you don’t own, can get you into a world of trouble.

The following subsections are a couple ideas for solving this problem.

Get Official Permission
Look into official channels through which you can deploy experimental pack-
ages in public. At A.M.W.A. World Headquarters in New York City, we looked
to the Parks Department, which allows researchers to leave experimental
devices in some of the city’s parks. The entire application process is on the
city’s website. It’s fairly extensive, requiring an explanation of the experiment
and a description of the device, but can be filled out in a single sitting.

Unfortunately, processing these permits seems to take a long time. We ap-
plied for one in early May 2012, and it still hadn’t arrived by the time this book
went to press in November.

Get Your Community Involved
• If you’re a student, get your teachers on your side when it comes to your

projects. Arduino is so new that there’s a good chance you’ll be teaching
the teachers for a change, and once your teachers understand what
you’re doing, they’ll be among your staunchest supporters.

30 Atmospheric Monitoring with Arduino

• If you’re a member of a hackerspace, have an open house. Invite mem-
bers of the community to meet you in person and learn about what you’re
doing. This may work wonders toward alleviating some of the public’s
fear of DIY electronics.

• If you’re not a member of a hackerspace, consider joining one, or even
starting one. Good online resources for finding and learning more
about hackerspaces are the Hackerspace Wiki and the UK Hackspace
Foundation.

Gadget: Tropospheric Gas Detector 31

http://hackerspaces.org/wiki/
http://hackspace.org.uk/view/Starting_a_Hackerspace
http://hackspace.org.uk/view/Starting_a_Hackerspace

3/A Brief Introduction
to LEDs

Before we start working on the LED photome-
ter, we’re going to take a brief look at why and
how the gadget’s crucial component—the light
emitting diode, or LED—can be used to moni-
tor certain properties of the atmosphere.
Even if you’ve worked with LEDs before, chances are your projects used them
simply as lights or indicators of some sort, with the color choices more about
aesthetics than science. By comparison, in this book we use LEDs in ways
that take advantage of the physics of light.

We think you’ll get more out of building and using the LED photometer if you
know more about that. But if you’re feeling impatient, skip to the project in
Chapter 4, the LED Sensitivity Tester, and proceed from there.

It is essential to test your LEDs before you build the LED pho-
tometer. Testing takes two forms: (1) testing to see if the LEDs
light up and (2) testing the LEDs for wavelength sensitivity.
The first test is easy: you can connect the short wire of an LED
to Arduino GND and the long end to pin 13, and run the BLINK
sketch that comes with the Arduino IDE software; if the LED
blinks, it works. (An even easier way is to connect an LED to a
3 v coin cell—with the long wire on the positive side of the bat-
tery. If the LED lights, it works.)

Testing the LED for wavelength sensitivity is much more com-
plicated; we deal with that in Chapter 4.

What Is a Diode?
A diode is a two-terminal electronic device that lets electricity flow easily in
one direction, and prevents (or resists) it from flowing in the other direction.

33

Many electrical components can be run “backwards”: for example, a loud-
speaker can be used as a microphone, and vice versa. A motor, which turns
electricity into movement, can often be used as a generator that turns move-
ment into electricity.

This reversibility of electronic components is partly thanks to the fact that
electricity usually has no problem flowing both ways through a circuit; it
makes no difference to an electron if it flows from a battery to a motor or
from a motor to a battery.

But the direction of electron flow matters if we’re designing a generator cir-
cuit: we don’t want that circuit to suddenly work in reverse and start spinning
like a motor! This is where diodes are useful. They work like valves that pre-
vent the “backflow” of electricity, ensuring that electrons will move only in
the direction we want them to.

Discovery of the Diode
The 1870s were an exciting time to be working with electricity. In America,
Thomas Edison was inventing some of the devices that would define the 20th
century: the light bulb, the phonograph, and an improved telephone. Mean-
while in Europe, scientists were taking a more theoretical approach, seeking
to understand how electricity flowed.

In 1874, a German scientist named Karl Ferdinand Braun published an ac-
count of what he called “the unilateral conduction of current by natural metal
sulfides.” Up to this point, scientists knew that electricity could travel along
a wire in either direction. Braun discovered that a crystal of tetrahedrite (a
compound of copper, antimony, and sulfur) let electricity flow through it in
only one direction. This demonstration of one-way electrical flow was the first
known semiconductor diode—in fact, it was the first semiconductor in
history.

What Is a Light Emitting Diode?
A light emitting diode is a diode that emits light.

Okay, snark aside, in 1907 a scientist named Henry Joseph Round discovered
that crystals of carborundum gave off a faint yellow light when they were
energized by electrons. These crystals were also diodes, and didn’t emit light
when electricity tried to flow the other way. Scientists later discovered that
in an LED, electrons combine with electron “holes” in the crystal, and release
excess energy as photons in a very narrow range of wavelengths known as
the emission band. The narrowness of this emission band is rivaled only by
laser light, and explains the jewel-like purity of LED light.

Figure 3-1 shows some LEDs in sizes 8 mm, 5 mm, and 3 mm. Two important
things to know for DIY purposes are that the longer lead is called the anode

34 Atmospheric Monitoring with Arduino

(commonly thought of as the positive terminal), and the shorter lead is called
the cathode (commonly thought of as the negative terminal). An easy way
to remember this is that the negative terminal has something “subtracted”
from it. Because an LED is a diode, electricity will only easily flow through it
in one direction. So when you plug an LED into a circuit, be sure to connect
the anode to the positive side of the circuit and the cathode to the negative
side or ground, if you expect to make it glow.

Figure 3-1. LEDs in 8 mm, 5 mm, and 3 mm sizes.

How Are We Using LEDs in the LED
Photometer?
LEDs not only emit light; they absorb it, too. An amateur scientist discovered
this capability of LEDs in the 1970s. Forrest M. Mims III, a former US Air Force
officer, had been doing experiments with photocells and light since he was a
boy. Understanding that many electronic devices can be run “backwards”
[see “What Is a Diode?” (page 33)], Mims reasoned that since LEDs take in
electricity and emit light (along that narrow emission band, remember), they
should also take in light and give off electricity. A series of experiments proved
him right, and by 1973 he had formalized what is now known as the Mims
Effect: LEDs will absorb light along a relatively narrow band of color, and emit
a small amount of electricity. These light-absorbing qualities of LEDs are
what we put to work in our LED photometer.

A Brief Introduction to LEDs 35

An LED absorbs light occurring in wavelengths near its own emission band,
or slightly shorter. A green LED absorbs light in the greenish-blue part of the
spectrum, a red LED absorbs light in the reddish-orange part of the spec-
trum, and so on. We can use this difference in the way LEDs absorb light to
tell us a great deal about the atmosphere.

What Is Color?
Color is a property of matter that we perceive depending upon which light
waves matter absorbs, and which it reflects or emits. Our eyes see the re-
flected or emitted light waves, and our brains process that information as
color. The shorter wavelengths occur in what we percieve as the blue-indigo-
violet range of the spectrum; the wavelengths we think of as green sit in the
middle; and the longer wavelengths occur in what we see as the red-orange-
yellow range. Ultraviolet (a very short wavelength of light) and infrared (a very
long one) are ends of the spectrum not visible to human eyes—although we
can see the re-emission of ultraviolet light, as with the psychedelic “black-
light” posters of the 1960s and 1970s, which were printed with inks containing
materials that excelled at absorbing those short light waves and re-emitting
visible light. And we can feel the long heat waves created by infrared. When
something appears white in sunlight, it is made of matter that reflects all
wavelengths of light; if it looks black, it’s made up of stuff that absorbs nearly
all wavelengths.

36 Atmospheric Monitoring with Arduino

4/Gadget: LED
Sensitivity Tester

Before building and using the LED photometer,
we first need to figure out exactly which wave-
lengths of light each of our LEDs is sensitive to.
Otherwise, we won’t be able to get good data
with the photometer. Unfortunately, no LED
datasheet that we’ve ever seen troubles itself
with listing LED input wavelength, because
LED manufacturers generally don’t think of
their products as input devices. Fortunately, we
can determine input wavelengths with a gadget
we can build ourselves: the LED sensitivity
detector.

Mission: Inputtable
Your mission, should you choose to accept it, is to determine the peak input
wavelength for a series of LEDs. You will do this by shining every wavelength
of visible light, from 350–700 nm, into each candidate LED, and measuring
that LED’s responsive voltage. The LED that’s most sensitive to the wavelength
is the one that produces the highest response voltage. Good luck.

How are we going to generate every visible wavelength of light to test our
LEDs, from ultraviolet to infrared? If your answer is “use a full-spectrum LED,”
you’re correct. This special type of LED is called an RGB LED and it can output
red light, green light, blue light, and any combination of those colors: the full
ROY G. BIV. Since it’s beyond the scope of this book to go too deeply into the
science of combining light to make different colors, suffice it to say that by
mixing varying intensities of red, green, and blue light, just about any color
can be reproduced. (Look very carefully at the pixels of your computer screen
to see this in action.)

37

Amount Part Type Properties/(Assembly Code)

1 Loudspeaker (SPKR1)

1 TEST LED, 5 mm 5 mm [THT]; (LED2)

1 RGB LED (com. anode, rbg) 5 mm [THT]; pin order rgb; polarity
common anode; rgb RGB (LED1)

2 47 Ω resistor Package THT; tolerance ±5%; bands 4;
resistance 47 Ω; pin spacing 400 mil (R1 &
R2)

1 62 Ω resistor Package THT; tolerance ±5%; bands 4;
resistance 62 Ω; pin spacing 400 mil (R3)

1 Arduino UNO R3 (Arduino1)

1 LCD screen Character type 16 pins (LCD1)

1 Permanent marker in a dark
color

Build the Gadget
1. Connect the RGB LED to Arduino. Most RGB LEDs are common

anode, so follow the datasheet that came with your LED to connect the
anode to the +5 pin on Arduino (Figure 4-1). The R, G, and B pins should
be connected to Arduino pins 8, 6, and 4, respectively. For our RGB LED,
the red cathode needed a 62 ohm resistor, while the green and blue
cathodes needed a 47 ohm resistor. (Your values may vary.)

When we say “connect an LED to Arduino” in these instruc-
tions, we intend for you to do this via a breadboard and jumper
wires, as illustrated in the figures for each step. Given the
amount of gadget handling involved in testing a bunch of LEDs,
using a breadboard will save a lot of wear and tear on Arduino.

38 Atmospheric Monitoring with Arduino

Figure 4-1. Step one.

2. Connect the LCD. Connect the common ground lead on the LCD
(screen display) to the GND pin on Arduino. Connect the VCC lead on
the LCD to the 3.3 power pin on Arduino. Connect the DATA lead on the
LCD to Arduino pin 2 (Figure 4-2).

Gadget: LED Sensitivity Tester 39

Figure 4-2. Step two.

3. Add an audio speaker for additional fun. Connect the speaker’s black
wire to GND on Arduino, and the speaker’s red wire to Arduino pin 8. The
schematic looks something like Figure 4-3.

40 Atmospheric Monitoring with Arduino

Figure 4-3. Step three.

4. Load the sketch. Now we need a way to translate a wavelength of light
into its red, green, and blue values. Fortunately, a scientist named Dan
Brunton has developed a formula that will do just that. We programmed
Brunton’s algorithm into the following Arduino sketch. After setting up
all the components, running this code will cause the RGB LED to emit
light from 350–700 nm, the range of visible light.

You can find this sketch in the AMWA GitHub repository.

 /**
 * Determining RGB color from a wavelength
 * The code is based on an algorithm from Dan Bruton's Color Science Page.
 * http://www.midnightkite.com/color.html
 * by Patrick Di Justo
 * 2012 08 28
 *
 **/

Gadget: LED Sensitivity Tester 41

https://github.com/ejgertz/AMWA

#include <EEPROM.h>
#include <SoftwareSerial.h>

//Set up the Liquid Crystal Display
#define LCDIn 3
#define LCDOut 2
SoftwareSerial mySerialPort(LCDIn, LCDOut);

//LCD Display buffers
char databuff[16];
char dispbuff[16];

// Variables needed for RGB calculations
float Gamma = 1.00;
int MaxIntensity = 255;
float fBlue;
float fGreen;
float fRed;
float Factor;

int iR;
int iG;
int iB;

//Our eyes can generally see light wavelengths between 350 and 700
nanometers.
//Here, we start the RGB Led with 350
int i = 350;

//RGB is plugged into these arduino digital pins
const int redOutPin = 8;
const int greenOutPin = 6;
const int blueOutPin = 4;

// LED to be tested is plugged into A0
int testPin = A0;

// variables to store the value coming from the sensor
int sensorValueTest =0;
int oldTest =0;
int peaknm =0;

//EEPROM start data
int addr=0;

//Music
int notelen = 90;
int dlx = 130;

void setup()
{
 pinMode(LCDOut, OUTPUT);
 pinMode(LCDIn, INPUT);

42 Atmospheric Monitoring with Arduino

//Set the RGB LED pins to output

 pinMode(redOutPin, OUTPUT);
 pinMode(greenOutPin, OUTPUT);
 pinMode(blueOutPin, OUTPUT);

// Initialize the LCD display
 mySerialPort.begin(9600);
 mySerialPort.write(0xFE);
 mySerialPort.write(0x01);

 // test to see if the RGB LED works
 makeColor(i);
 analogWrite(redOutPin,255-iR);
 analogWrite(greenOutPin, 255-iG);
 analogWrite(blueOutPin, 255-iB);
 delay(5000);
}

void loop()
{

// set the RGB LED to a specific color
 makeColor(i);
 analogWrite(redOutPin, 255-iR);
 analogWrite(greenOutPin, 255-iG);
 analogWrite(blueOutPin, 255-iB);
 delay(500);

// read the sensitivity of the Test LED
 sensorValueTest= analogRead(testPin);

 if (sensorValueTest > oldTest)
 {
 oldTest = sensorValueTest;
 peaknm = i;
 }

// Display the values on the LCD
 sprintf(databuff,"CV:%3d Cnm:%3d",sensorValueTest,i);
 sprintf(dispbuff,"%-16s",databuff);
 mySerialPort.print(dispbuff);

 sprintf(databuff,"XV:%3d Xnm:%3d",oldTest, peaknm);
 sprintf(dispbuff,"%-16s",databuff);
 mySerialPort.print(dispbuff);

 writeData();
 i++;

 // If we've reached the upper limit of 700 nm, play a little melody
 if (i>700)

Gadget: LED Sensitivity Tester 43

 {
 for (int f = 0; f<=100; f++)
 {
 tone(7,196,notelen);
 delay(dlx);

 tone(7,131,notelen);
 delay(dlx);

 tone(7,261,notelen);
 delay(dlx);

 tone(7,330,notelen);
 delay(dlx);

 tone(7,294,notelen);
 }
 delay(10000);
 }
}

void writeData()
{
 int quotient = i/256;
 int mod = i % 256;

 EEPROM.write(addr++,quotient);
 EEPROM.write(addr++,mod);

 quotient = sensorValueTest/256;
 mod = sensorValueTest % 256;
 EEPROM.write(addr++,quotient);
 EEPROM.write(addr++,mod);
}

void makeColor(int lambda)
{
 if (lambda >= 350 && lambda <= 439)
 {
 fRed = -(lambda - (float)440.0) / ((float)440.0 - (float)350.0);
 fGreen = (float)0.0;
 fBlue = (float)1.0;
 }
 else if (lambda >= (float)440.0 && lambda <= (float)489.0)
 {
 fRed = 0.0;
 fGreen = (lambda - (float)440.0) / ((float)490.0 - (float)440.0);
 fBlue = 1.0;
 }
 else if (lambda >= (float)490.0 && lambda <= (float)509.0)
 {

44 Atmospheric Monitoring with Arduino

 fRed = 0.0;
 fGreen = 1.0;
 fBlue = -(lambda - (float)510.0) / ((float)510.0 - (float)490.0);

 }
 else if (lambda >= (float)510.0 && lambda <= (float)579.0)
 {
 fRed = (lambda - (float)510.0) / ((float)580.0 - (float)510.0);
 fGreen = 1.0;
 fBlue = 0.0;
 }
 else if (lambda >= (float)580.0 && lambda <= (float)644.0)
 {
 fRed = 1.0;
 fGreen = -(lambda - (float)645.0) / ((float)645.0 - (float)580.0);
 fBlue = 0.0;
 }
 else if (lambda >= 645.0 && lambda <= 780.0)
 {
 fRed = 1.0;
 fGreen = 0.0;
 fBlue = 0.0;
 }
 else
 {
 fRed = 0.0;
 fGreen = 0.0;
 fBlue = 0.0;
 }

 if (lambda >= 350 && lambda <= 419)
 {
 Factor = 0.3 + 0.7*(lambda - (float)350.0) / ((float)420.0 -
(float)350.0);
 }
 else if (lambda >= 420 && lambda <= 700)
 {
 Factor = 1.0;
 }
 else if (lambda >= 701 && lambda <= 780)
 {
 Factor = 0.3 + 0.7*((float)780.0 - lambda) / ((float)780.0 -
(float)700.0);
 }
 else
 {
 Factor = 0.0;
 }
 iR = factorAdjust(fRed, Factor, MaxIntensity, Gamma);
 iG = factorAdjust(fGreen, Factor, MaxIntensity, Gamma);
 iB = factorAdjust(fBlue, Factor, MaxIntensity, Gamma);
}

int factorAdjust(float C, float Factor, int MaxIntensity, float Gamma)
{

Gadget: LED Sensitivity Tester 45

 if(C == 0.0)
 {
 return 0;
 }
 else
 {
 return (int) round(MaxIntensity * pow(C * Factor, Gamma));
 }
}

5. Select an LED to test. If you’ve purchased a large number of LEDs to
test, they’re likely to arrive in individual plastic pouches. Neatly pull or
cut open the plastic pouch containing the LED, take the LED out, and set
the pouch aside; you’ll need it again soon (Figure 4-4).

Figure 4-4. Step four.

6. Connect the LED. Hook up the anode to Arduino analog pin 0, and the
cathode to GND (Figure 4-5).

46 Atmospheric Monitoring with Arduino

Figure 4-5. Step five.

As you test each LED, be careful to plug it into the breadboard
with the proper polarity: anode to Arduino’s analog pin 0 and
cathode to Ardunio’s GND pin.

7. Test the LED. For best results, enclose the test LED and the RGB LED in
a single small, opaque tube, such as a piece of shrinkwrap tubing, a
blackened soda straw, or even the opaque, sawed-off body of a ball point
pen. Ideally, the two LEDs should be extremly close without actually
touching. When everything is ready, turn on or reset Arduino.

Several things will happen. The RGB LED will start to glow, and the top
line of the LCD will inform you that the RGB LED is currently displaying
a particular wavelength of light ranging from 350–700 nm. At each
wavelength, the test LED absorbs the light being put out by the RGB LED,
and converts that to a voltage.

Gadget: LED Sensitivity Tester 47

• Low voltage means that the test LED is not absorbing much light at
that wavelength; in other words, the test LED is not very sensitive to
this color. A higher voltage indicates that the test LED is more sensitive
to this particular wavelength and is therefore creating more electricity
from the light it absorbs.

• As Arduino works its way up the spectrum, it keeps track of the peak
voltage the test LED puts out, and the particular wavelength that
caused the peak voltage.

• You’ll know the test is complete when the counter reaches 700 nm,
and Arduino plays a little melody.

8. Note your results. Using the permanent marker, write your data—the
peak voltage and the light wavelength that caused it—on the plastic
pouch that you set aside in step four. Carefully remove the test LED from
the gadget and slide it back into the pouch.

9. Return to step five and hit the reset button on Arduino to repeat the
sensitivity test with another LED.

In order to build an LED photometer that works properly, it’s very important
to test each LED before you use it in the photometer. You need to know the
particular wavelengths of light that your LEDs are detecting, because this
impacts the types of gases you’ll be able to detect in the atmosphere, and
how well you’ll be able to detect them.

nm? What is this nm?
Wavelengths of light are so small they are measured not in millimeters
(1/1,000ths of a meter) or micrometers (1/1,000,000ths of a meter) but in
nanometers (1/1,000,000,000ths of a meter). Because wavelengths of light
are so small, a great many things interfere with them. Imagine that you’re
inside a walk-in closet or windowless bathroom: by simply sealing the door,
it would be easy to stop all light waves from entering the room. But if you had
a portable radio with you (if you know what that is), or your cell phone (which
is very much like a portable radio), you’d have no problem getting a radio
signal even though all external light into your room was cut off—unless your
closet was deep inside an underground, reinforced concrete security bunker!

Radio waves and light waves are the same physical phenomena: electromag-
netic radiation, differing only in wavelength size. So we can say that clearly,
light waves are more easily stopped by physical objects than other types of
electromagnetic waves. In fact, that’s the whole purpose of this LED photo-
meter. Molecules of gas and particles of dust that by themselves are invisible
to the naked eye all are large enough to interfere with certain wavelengths of

48 Atmospheric Monitoring with Arduino

light. By measuring which light waves are affected more strongly and which
light waves are affected less strongly by the given particles in the atmosphere,
we can get a very good estimate of the concentration of those gases or par-
ticles in the atmosphere.

Table 4-1 shows some values we got with a sample of LEDs from different
manufacturers. Notice that while the LED peak input value is usually lower
than the output value, that’s not always the case. LEDs at the blue end of the
spectrum have input wavelengths almost exactly the same as their output
wavelengths. As we move down the spectrum toward the red end, the dis-
tance between input and oputput wavelength grows, but not uniformly. For
example, look at the two yellow LEDs giving off light with a wavelength of 592
nm. Their input values are exactly 20 nm different!

This explains why we said earlier that it is important to test your LEDs. You
need to know exactly which peak wavelength your LEDs are absorbing.

Table 4-1. Frequencies of light for various LEDs by part number.

Manufacturer Mfgr Part Number Color Output nm Input nm

Jameco Valuepro LVB3330 Blue 430 429

Avago Technologies QLMP-LB98 Blue 470 471

Avago Technologies QLMP-LM98 Green 525 498

Agilent HLMP-CM39-UVCDD Green 535 505

Siemans Corporation LG5469FH Green 565 507

Valuepro LUY3833H Yellow 590 537

Valuepro BVT-5E1TT4E Yellow 592 552

Jameco Valuepro BVT-529TT8E Yellow 592 532

Valuepro LVY3333/A Yellow 595 532

Valuepro RL50-PY543 Yellow 595 517

Valuepro LUE3333 Orange 620 625

Valuepro UT9C13-86-UDC2-R Red 630 580

Jameco Valuepro BVT-5E1QT4ER Red 634 555

Valuepro RL50-PR543 Red 635 534

Gadget: LED Sensitivity Tester 49

5/Gadget: LED
Photometer

A photometer is a device that measures one or
more qualities of light. Most photometers con-
sist of an interference filter and a photo detec-
tor. The interference filter is a colored piece of
plastic or glass that filters out nonessential col-
ors, letting through only the precise wave-
lengths of light we’re interested in studying. A
photo detector behind that filter monitors the
intensity of the light that makes it through the
filter.
In this gadget, LEDs replace both the interference filter and the photo de-
tector. As Forrest Mims showed, LEDs are photodiodes: diodes that generate
electrical current proportional to the light that falls on them, and they act as
their own color filter. As you learned from your own experiments with the LED
sensitivity tester, a blue LED is most sensitive to blue light and much less
sensitive to red. By recording the amount of current from differently colored
LEDs, we can learn how much of each color of the sun’s light (blue, green,
and red) is getting through the atmosphere to the gadget.

The main advantage of an LED photometer is that it is relatively inexpensive.
LEDs are cheap, rugged, and stable. They come in a variety of colors and a
variety of spectral responses. The electronics that go with them can be pur-
chased online or at any good electronics store.

A couple things to keep in mind:

• Although LEDs can work as detectors, they were not built for this pur-
pose. Whereas an ideal detector for our needs would detect only a very
narrow range of wavelengths, and be perfectly centered around the

51

wavelengths we wish to study, LEDs can detect light over a fairly wide
range of wavelengths. That’s why we’ve tested the LEDs: to know their
detection peaks, so that we know which wavelengths of light we’re
measuring.

• Also, the current generated by an LED can change with the temperature
of the LED; for this reason, we advise you to keep the gadget at room
temperature, and make all outside measurements relatively quickly, be-
fore the gadget heats up (or cools down) too much.

Even allowing for these shortcomings, however, it is perfectly possible to get
scientifically valid data by using the LED detectors to measure the upper
atmosphere.

Build the Gadget
Amount Part Type Properties

1 Piezo Speaker

1 Blue LED, 5 mm Package 5 mm [THT]; leg yes; color Blue

1 Green LED, 5 mm Package 5 mm [THT]; leg yes; color Green

1 Red LED, 5 mm Package 5 mm [THT]; leg yes; color Red

1 Arduino Processor ATmega; variant Arduino

1 LCD screen Type character; pins 16

There are two sequences of steps that are equally essential to creating the
LED photometer: building it, and calibrating it.

1. Connect the LEDs to Arduino (Figure 5-1). We’ve found it’s easiest to do
this as follows:

a. Connect the negative (i.e., shorter wire) of each LED to the GND rail
of the breadboard.

b. Connect the positive (i.e., longer wire) of each LED to the breadboard.

c. Using jumpers, connect each LED to the appropriate Analog pin on
Arduino. Our Arduino sketch expects the red LED to be plugged into
A1, the green LED into A2, and the blue LED into A3.

2. Connect the speaker (Figure 5-2). Plug the positive lead into Arduino
digital pin 7 and the negative pin into Arduino GND. Many speakers don’t
list the polarity of their connection, so don’t worry too much about this;
just plug it in!

52 Atmospheric Monitoring with Arduino

Figure 5-1. Step one.

Figure 5-2. Step two.

Gadget: LED Photometer 53

3. Connect the LCD unit to Arduino (Figure 5-3). The data line connects to
Arduino digital pin 5, the power line connects to Arduino 3.3 v pin, and
GND line connects to GND.

Figure 5-3. Step three.

Load the Sketch
You can find this sketch in the AMWA GitHub repository.

 /*
 LED Photometer, based on Analog Input
 by Patrick Di Justo
 2012 08 30
 */

#include <EEPROM.h>
#include <SD.h>
#include <SoftwareSerial.h>

// Liquid Crystal Display
// Define the LCD pins: We'll be using a serial-based LCD display
// which only required +3.3Volts, GND, and a single data line.
// databuff and displaybuff hold the data to be displayed

#define LCDIn 3
#define LCDOut 5

54 Atmospheric Monitoring with Arduino

https://github.com/ejgertz/AMWA

SoftwareSerial mySerialPort(LCDIn, LCDOut);

// Data Buffers for the LCD
char databuff1[16];
char databuff2[16];
char dispbuff[16];

// LED variables section
// Which Arduino pin goes to which LED
int redPin = A1;
int greenPin =A2;
int bluePin=A3;

// A place to store the values coming from the analog port
int sensorValueRed =0;
int sensorValueGreen =0;
int sensorValueBlue = 0;

//A place to store the maximum value for each LED
int maxRed = 0;
int maxGreen =0;
int maxBlue = 0;

//EEPROM variables
// The record length is 7: 1 byte for the record number, 2 bytes
// each for the 3 LEDs. For each additional LED you add, increase
// the record length by 2.
int record=0;
int reclen = 7;
int addr =0;

// the following variable is long because the time, measured in
miliseconds,
// will quickly become a bigger number than can be stored in an int.
long timeSinceLastSensorHigh = 0;
int dataWritten = 0;

// music section
int notelen =40;
int dlx = notelen *1.33;

//switch to tell if an SD card is present
int SDPresent = 1;

void setup()
{
 // initialize serial communications at 9600 bps:
 Serial.begin(9600);

 // Set the Analog Pins
 // Why are we setting input pins to output?
 // We're doing this to prevent "leakage" from the pins.
 // Setting the pins to output activates a pullup resistor,

Gadget: LED Photometer 55

 // which makes it difficult for voltage to come into the Arduino,
 // until we're ready for it.

 Serial.println("Setting up the Analog Pins");

 pinMode(redPin, OUTPUT);
 digitalWrite(redPin, LOW);
 pinMode(greenPin, OUTPUT);
 digitalWrite(greenPin, LOW);
 pinMode(bluePin, OUTPUT);
 digitalWrite(bluePin, LOW);

 // Set up SD card, let us know if SD card is absent
 pinMode(10, OUTPUT);
 if (!SD.begin(4)) delay(10);
 SDPresent =0;

 //Set up LCD
 pinMode(LCDOut, OUTPUT);

 mySerialPort.begin(9600);
 mySerialPort.write(0xFE);
 mySerialPort.write(0x01);
 sprintf(databuff1,"Wakeup Test");
 sprintf(dispbuff,"%-16s",databuff1);
 mySerialPort.print(dispbuff);

//set up EEPROM
 record = EEPROM.read(0);
 addr = (record * reclen) +1;
 Serial.println("BEEP");

// Play music to let user know the gadget is ready
 tone(7,294,notelen);
 delay(dlx);
 tone(7,330,notelen);
 delay(dlx);
 tone(7,261,notelen);
 delay(dlx);
 tone(7,131,notelen);
 delay(dlx);
 tone(7,196,notelen);
 delay(dlx);
 delay(3000);
}

void loop()
{
 // read the value from the sensor:
 /*
 Back in setup(), we enabled a pullup resistor on the analog pins, which
 made it difficult for electricity to come into the analog pins.
 Here, we disable the pullup resistor, wait 10ms for the pin to

56 Atmospheric Monitoring with Arduino

stabilize,
 read the voltage coming into the pin, then reenable the pullup
resistor.
 */

 pinMode(redPin, INPUT);
 delay(10);
 Serial.print("Reading red: ");
 sensorValueRed= analogRead(redPin);
 pinMode(redPin, OUTPUT);
 Serial.println(sensorValueRed);
 delay(10);

 pinMode(greenPin, INPUT);
 delay(10);
 sensorValueGreen = analogRead(greenPin);
 pinMode(greenPin, OUTPUT);
 delay(10);

 pinMode(bluePin, INPUT);
 delay(10);
 sensorValueBlue = analogRead(bluePin);
 pinMode(bluePin, OUTPUT);
 delay(10);

 Serial.println("Comparing sensor values...");

 // Here we compare each sensor to its maximum value.
 // If any of the sensors has reached a new peak, sound a tone
 if((sensorValueRed>maxRed)
 || (sensorValueGreen>maxGreen)
 || (sensorValueBlue>maxBlue))
 {
 tone(7,maxRed+maxGreen+maxBlue,500);
 timeSinceLastSensorHigh = millis();
 }

 // Here we reset the old maximum value with a new one, if necessary
 if(sensorValueRed>maxRed) maxRed = sensorValueRed;
 if(sensorValueGreen>maxGreen) maxGreen = sensorValueGreen;
 if(sensorValueBlue>maxBlue) maxBlue = sensorValueBlue;

 // Display the sensor values on the LCD screen
 sprintf(databuff1,"R%3d G%3d B%3d",maxRed,maxGreen,maxBlue);
 sprintf(dispbuff,"%-16s",databuff1);
 mySerialPort.print(dispbuff);
 Serial.print(dispbuff);

// If 10 seconds has gone by without any new measurements, write
// data to storage.

 if(millis() > (timeSinceLastSensorHigh + 10000))
 {
 if(dataWritten ==0)
 {

Gadget: LED Photometer 57

 writeData();
 if(SDPresent = 1)
 {
 writeDataToSD(databuff1, databuff2);
 }
 }
 }
}

void writeData()
{
 Serial.print("I'm writing data!!!!!!!!!!!!!!!");
 record++;
 EEPROM.write(0, record);
 EEPROM.write(addr++, record);

 /*
 The problems of data storage:
 The analog pins read a value from 0 to 1023. This is 1024 different
values,
 and 1024 = 2 ^ 10. It would take 10 bits of data space to safely
 store the value from the analog pins. Unfortunately, a standard byte
 of data is only 8 bits. How can you fit 10 bits into 8 bits?
 You can't.

 What we're doing here is splitting the 10 bits of data into two sections,
 which can be stored in two bytes of memory space.
 */

 int quotient = sensorValueRed/256;
 int mod = sensorValueRed % 256;
 EEPROM.write(addr++,quotient);
 EEPROM.write(addr++,mod);

 quotient = sensorValueGreen/256;
 mod = sensorValueGreen % 256;
 EEPROM.write(addr++,quotient);
 EEPROM.write(addr++,mod);

 quotient = sensorValueBlue/256;
 mod = sensorValueBlue % 256;
 EEPROM.write(addr++,quotient);
 EEPROM.write(addr++,mod);
 dataWritten = 1;

 sprintf(databuff1,"EEPROM written");
 sprintf(dispbuff,"%-16s",databuff1);
 mySerialPort.print(dispbuff);
 Serial.println("FINAL BEEP");

 tone(7,196,notelen);
 delay(dlx);

58 Atmospheric Monitoring with Arduino

 tone(7,131,notelen);
 delay(dlx);

 tone(7,261,notelen);
 delay(dlx);

 tone(7,330,notelen);
 delay(dlx);

 tone(7,294,notelen);
}

void writeDataToSD(String dataString1, String dataString2)
{
 // open the file. note that only one file can be open at a time,
 // so you have to close this one before opening another.
 File dataFile = SD.open("LEDdata.txt", FILE_WRITE);

 // if the file is available, write to it:
 if (dataFile)
 {
 dataFile.print(millis());
 dataFile.print(",");
 dataFile.println(dataString1);
 dataFile.close();

 sprintf(databuff1,"SDCard written");
 sprintf(dispbuff,"%-16s",databuff1);
 mySerialPort.print(dispbuff);
 }
}

Calibrate the Gadget: Air Mass,
Atmospheric Optical Thickness, and
Extraterrestrial Constant
Remember when we said that the sunlight travels to the ground through dif-
ferent thickness of atmosphere, depending on how high the sun is above the
horizon? This can have an effect on the readings you get with your LED pho-
tometer, as well (see Figure 5-4).

Gadget: LED Photometer 59

Figure 5-4. Sun angles in spring, summer, fall, and winter.

60 Atmospheric Monitoring with Arduino

Generally, this device is meant to measure the atmosphere at around noon
each day, when the sun is at its highest in the sky and its path through the
atmosphere is shortest. At the very least, if you can’t make regular noon
measurements, you should try to take measurements around the same time
each day.

As long as you keep the components as they are (e.g., don’t
swap out various LEDs, or use a different Arduino), your pho-
tometer doesn’t need to be calibrated ever again. There are
examples of LED photometers that have been working for 20
years without further calibration.

But that raises an interesting problem: as the Earth revolves around the sun,
the position of the sun at noon changes enormously over the course of the
year. On the first day of summer, the noonday sun is as close to being directly
overhead as it will ever get, while on the first day of winter, the noonday sun
hugs the horizon 47° lower than the summer sun. This can have a profound
effect on the measurements you get with your LED photometer, since the
sunlight is moving through significantly differing distances of air through the
course of a year.

This is why we have to take into account a value called air mass. The formula
for air mass is very simple:

m = 1 / sin(theta)

where theta is the angle of the sun above the horizon.

Let’s take a look at how the air mass at noon will differ over the course of a
year from A.M.W.A. World Headquarters (see Table 5-1).

Table 5-1. Sun angles and air mass from New York City.

Date Noon Sun Angle Air Mass

March 20, 2013 49.4 1.3170

June 21, 2013 72.7 1.0474

September 22, 2013 49.3 1.3190

December 21, 2013 25.9 2.2894

At noon on the first day of spring, March 20, the noon sun is 49.4° above the
horizon. Plugging that into the preceding formula results in an air mass of
about 1.3170. This means that the sun’s light had to travel through 1.3170
times as much air as it would if the sun were directly overhead.

Gadget: LED Photometer 61

At midday on the first day of summer, June 21, the sun was at 72.7° above
the horizon. This gives us an air mass of 1.0474, meaning that the sun’s light
had to travel through 1.0474 times as much air as it would if the sun were
directly overhead; that’s a pretty negligible difference on its own terms, but
about 25% lower than the air mass in March.

On September 22, the first day of autumn, the sun returned to 49.3° above
the horizon, almost exactly where it was in March.

On December 21, the first day of winter, the sun at noon was 25.9° above the
horizon. Plugging that into the preceding formula, we see that the air mass
is a whopping 2.2895! The sun’s light is traveling through more than twice as
much air as it did on the first day of summer. This is an enormous difference,
and, if uncorrected, would have an effect on the data we collect.

To fix this, we can use the data we collect to calculate a value called the
atmospheric optical thickness (AOT). AOT measures the clarity of the air for
any given air mass by comparing the data that you measure on the surface
of the earth with the data your LED photometer would get if it were above the
atmosphere, out in space.

Are we going to send our LED photometer into space? If only! Although that
sounds like a great project, it’s a little beyond the scope of this book—and
unnecessary. What we’re going to do is to take several measurements that
will tell us what our LED photometer would measure if it were out in space.

Calculating Atmospheric Optical
Thickness
Once you’ve built your LED photometer, wait for an exceptionally clear day.
You’ll want a day where the humidity remains constant, the cloud cover is
almost nonexistent, and a place where there are no obvious nearby forest
fires, or anything else that would contribute haze to the atmosphere. (Con-
versely, you could also wait for an overcast day, as long as the cloud cover is
uniform. However, the data you get might not be as good as one from an
exceptionally clear day.)

On this clear day, you’re going to take a series of measurements with your
LED photometer every half hour for half of the daylight hours (Table 5-2). You
can take these measurements from dawn until noon, or from noon until sun-
set. Carefully keep track of the sun’s angle above the horizon at each meas-
urement point.

Table 5-2. Solar data, noon to near sunset.

Time Sun Angle Air Mass Averaged LED Value

12:00 58 1.179 578.33

12:30 57.2 1.189 539

13:00 55 1.220 553

62 Atmospheric Monitoring with Arduino

13:30 51.8 1.272 552

14:00 47.9 1.347 563.33

14:30 43.3 1.458 552.66

15:00 38.3 1.613 575

15:30 33 1.836 520.33

16:00 27.5 2.165 539

16:30 21.9 2.681 502

17:00 16.3 3.562 490

17:10 14.4 4.021 474.66

17:20 12.5 4.620 472.66

17:30 10.6 5.436 463.33

17:40 8.7 6.611 443.33

To find the angle of the sun at any given time of day, visit the
US Naval Observatory’s Sun Calculator.

Once you’ve collected this data, take it back to your workstation and, using
graph paper or a spreadsheet program, create a scatter chart in which the Y
axis is the logarithm of the data from any one of the LEDs (or all of the LEDs)
and the X axis is the air mass at which these readings were taken.

Draw a best-fit line through the data points you get, and extend that line back
to the Y intercept where the air mass is zero. The Y value at that point is known
as the extraterrestrial constant, or EC. (If you’re using a spreadsheet, look for
a function called linear regression to accomplish the same thing.) Once
you’ve calculated the EC, your LED photometer is calibrated.

Now that we’ve derived EC, we can finally use that to calculate atmospheric
optical thickness, using the following formula:

AOT = (log(EC) / log(LED photometer reading)) / m

When your data is run through this formula, it will be scientifically “fit.” The
natural variance in the height of the sun above the horizon at various times
of year is now accounted for. The AOT is the true measure of atmospheric
optical thickness and should apply to all data you collect with your LED
photometer.

Gadget: LED Photometer 63

http://aa.usno.navy.mil/data/docs/AltAz.php

Every LED Photometer Has a Unique
Extraterrestrial Constant

The extraterrestrial constant varies for each LED photometer. Our LED pho-
tometer will have an EC that’s very slightly different then the LED photometer
you build. The variability may be as simple as different thickness of wire used
to connect the LEDs to Arduino, or different models of Arduino, or different
models of LEDs. The atmosphere’s opacity may change from day to day as
weather and environmental conditions shift, but the extraterrestrial constant
is a property of the instrument. Once you determine the extraterrestrial con-
stant for your own LED photometer, it shouldn’t need to be recalibrated ever
again.

Things to Try
Now that you’ve built the apparatus, let’s look at some things that you can
do with it.

Detecting “Ozone Holes”: Measuring the
Ozone Layer
The ozone layer is a narrow band in the Earth’s atmosphere, approximately
25 kilometers above the surface, where the concentration of the O₃ ozone
molecule is relatively high, reaching about 10 parts per million (compared to
the usual 0.6 ppm in other parts of the atmosphere).

The ozone layer is essential to life on Earth, because it absorbs around 97%
of the ultraviolet radiation from the sun, in the range of about 200–315 nm
(what scientists and sunscreen manufacturers call the UV-B band). UV-B
rays have enough energy to damage many biological molecules, including
DNA. Without an ozone layer, the Earth might never have developed life.

Save the Ozone Layer!
Widespread use of molecules called chlorofluorocarbons (CFCs) as propel-
lants in aerosol cans did a significant amount of damage to the ozone layer
in the 20th century; CFCs can break apart ozone molecules, leaving them
unable to absorb UV light. A 1987 international agreement, called the Mon-
treal Protocol on Substances that Deplete the Ozone Layer (or just “Montreal
Protocol” for short), banned most CFCs from use; nearly 200 nations have

64 Atmospheric Monitoring with Arduino

ratified it. Still, CFC residues remain in the stratosphere; some studies report
a 4% decrease in ozone concentrations per decade since the late 20th cen-
tury. However, since the turn of the century, scientists have begun to detect
evidence of ozone layer recovery, as well.

Measuring the ozone layer with LEDs is conceptually not very difficult: all
you’d need to do is to find an LED that aborbs ultraviolet light in the UV-A
range (about 200–315 nm), and compare its output with an LED that absorbs
light in the UV-B range. If the ozone layer didn’t exist, the surface measure-
ment of UV-A and UV-B would be equal, so any difference in the reading of
the two LEDs would most likely be related to the presence of the ozone layer.

All this seems easy enough to allow you to build an upper atmosphere ozone
monitor; but as a practical matter, UV LEDS become more and more expen-
sive as you go down the wavelengths. It’s also considerably more difficult
(and requires more and different equiment) to test a UV LED to see its ab-
sorption range.

However, there might be another way to make this work. Everyone knows
that ozone absorbs ultraviolet light, but not many people know that ozone
also has an absorption band centered around 602 nm, in the orange part of
the spectrum. This region, called the Chappuis band, is nowhere near as deep
as the UV-B absorption bands; still, scientists have gotten good data from
measuring how ozone absorbs orange light. Perhaps you can build an LED
photometer that measures the ozone absorption in the orange part of the
spectrum, if you can find an LED sensitive to 602 nm. Good luck!

Add an Accelerometer
Adding an accelerometer to the LED photometer will automatically tell you
the angle at which you’re pointing the device at the sun.

As we noted earlier, the sun’s angle at noon can vary by 47° over the course
of a year. While it’s not going to kill you to expend the effort to look up or
calculate the sun’s declination when you take a measurement, it would be
infinitely easier if Arduino itself told you the angle. You can make this happen
with a multiple axis accelerometer attached to your Arduino. This can make
the calculation of AOT so simple you might be able to include it in the Arduino
code, and store the resulting value with the rest of the data.

But there’s a drawback: most accelerometers use up to three analog inut pins
to get data to Arduino. You might have to cut back on the number of LEDs
you’re using, if you use an accelerometer. If you can think of another way to
make this work, we’d love to hear from you.

Gadget: LED Photometer 65

6/Using the LED
Photometer

One of the oldest bits of weather lore is “Red
sky at night, sailor’s delight. Red sky in morn-
ing, sailors take warning.” The sky is often red,
or reddish orange, at sunrise and sunset. Reds,
pinks, and oranges dominate at these times of
day because the distance from your eye to the
sun is greater at these times than when the sun
is directly overhead. When sunlight travels
through the atmosphere—and especially when
it travels that extra distance from the horizon
—an effect known as Rayleigh scattering takes
place.
The British physicist John William Strutt (the third Baron Rayleigh) explained
in 1871 that air molecules are so small they interfere with and scatter photons
of light. The various molecules that make up the Earth’s natural atmosphere
—mostly nitrogen and oxygen, with trace amounts of other gases—scatter
blue light (shorter wavelength light) more efficiently than red, orange, or yel-
low light (longer wavelengths). So when you look up, you see more scattered
blue light than red or orange light. This is why our sky appears blue during
most of the daytime (Figure 6-1).

When the sun is on the horizon at dawn or dusk, however, its light must travel
through more of the atmosphere before we see it than when it is overhead
(Figure 6-2). This leads to more and more of the blue light being scattered
away, leaving behind the red-orange-yellow light. As well, dust and aerosols
in the atmosphere more ably scatter long wavelengths of light—leading to
lurid red sunsets.

67

Figure 6-1. As sunlight hits the Earth’s atmosphere, air molecules scatter
the shorter, blue wavelengths of light, but let the longer wavelengths
through. Credit: NOAA ERSL.

As atmospheric particles get larger, they tend to scatter all wavelengths of
light equally and indiscriminately. This explains why clouds, which are made
of relatively large water droplets, are white.

Figure 6-2. This chart describes the absorption of sunlight by various at-
mospheric molecules. Look carefully in the 700 nm range of wavelengths:
the dips in the “Direct Solar Irradiance at Sea Level” line indicate where mol-
ecules like water and oxygen are blocking out certain wavelengths of sun-
light.

68 Atmospheric Monitoring with Arduino

http://www.esrl.noaa.gov/gmd/grad/about/redsky/index.html

Of course, molecules don’t just scatter wavelengths of light. Certain mole-
cules, such as water vapor, carbon dioxide, and ozone, also absorb specific
wavelengths of light. To a measuring instrument on the ground, there is less
light at those specific wavelengths than there is at other nearby wavelengths,
because some of that light has been absorbed. By measuring these “holes”
where wavelengths of light are absent, you can get a very good estimate of
how much water vapor, ozone, and some other substances are in the atmos-
phere above your head.

Atmospheric Aerosols
Atmospheric aerosols are tiny particles of matter suspended in the atmos-
phere. These minute particles scatter and absorb sunlight, reducing the
clarity and color of what we see. This is the effect we’re referring to when we
talk about “haze” in the sky.

Sources of Haze
Atmospheric haze comes from diverse sources. Most inhabited places on
Earth always have some water vapor in the atmosphere, and enough water
vapor can cause haze. Clouds and fog add more particles to the atmosphere,
making visibility even hazier. Forest fires, volcanic eruptions, and dust storms
can all increase haze in the atmosphere, sometimes hundreds of miles away
from where they originate.

Human activites contribute to haze as well: smoke given off by cooking or
heating fires, for example, or by industrial facilities such as coal-fired power
plants. When sunlight hits the exhaust from automotive vehicles, the nitrogen
oxides and hydrocarbons in the exhaust react to create photochemical smog
and ozone; both create haze. Even contrails from high flying airplanes can
make the sky hazy.

According to the US Environmental Protection Agency, since 1988 the at-
mosphere in national parks and wilderness areas in the United States has
gotten so hazy that average visibility has dropped from 90 miles to 15–25
miles in the east, and from 140 miles to 35–90 miles in the west.

The LED photometer measures the difference between the voltage produced
by a red LED, which absorbs light around the 580 nm range, and the voltage
produced by a green LED, which absorbs light around the 500 nm range. The
readings appear on the LCD, and are then stored on the Arduino’s EEPROM
(and/or SD card, if you choose to use one).

You can chart this data by hand, extract the data, and graph it in a spread-
sheet program, or upload it to Cosm (formerly Pachube) to share it with the
world. More on this shortly.

Using the LED Photometer 69

http://www.cosm.com

On a clear day with very little haze, the voltages produced by the green LED
and red LED will be somewhat similar. As atmospheric aerosols increase,
however—whether over the course of a day, several days, or from season to
season—the difference between the red LED’s voltage and the green LED’s
voltage will increase. The green LED will produce less current when there is
more atmospheric haze, because less green light than usual is reaching it.

The voltages will almost never be exactly the same; Rayleigh
scattering guarantees that more green light will be scattered
by our atmosphere than red light. Also, white light reflected by
clouds can sometimes cause the green LED to spike. The best
results come from days without clouds (or with a uniform
cloud cover).

Photosynthetically Active Radiation
(PAR)
Photosynthesis, the process by which green plants turn sunlight into carbo-
hydrates, does not use green light.

Plants appear green precisely because they reflect green light; they have no
use for those wavelengths, and therefore can afford to throw them away.
Green leaves absorb a great deal of the light at red and blue wavelengths. You
can use LEDs to measure how much of those wavelengths—how much pho-
tosynthetically active radiation—is reaching your detector.

You do this by summing the outputs from two LEDs: the same red LED as in
the aerosol detector, and a blue LED. As with the aerosol detector, Arduino
reads the voltages produced by the red and blue LEDs, displays them, and
stores them where they can be graphed, extracted into a spreadsheet, or
uploaded to Cosm.

Forrest M. Mims, the man who discovered the Mims effect, has
shown that using red and blue LEDs to measure photosyn-
thetically active radiation agrees very well with more “profes-
sional” PAR sensors.

Water Vapor (WV)
Atmospheric water vapor absorbs EM wavelengths in the range of infrared
light, at around 940 nm. By using an infrared LED specifically designed to
absorb light at 940 nm, you can get a very accurate representation of the
amount of water vapor in the atmosphere. Simply compare the outputs of
the 940 nm LED with a similar infrared LED sensitive to around 880 nm.

70 Atmospheric Monitoring with Arduino

One thing to keep in mind, however, is that this type of measurement is in-
credibly dependent upon local weather conditions. The rapid passage of a
storm front over your observational area can play havoc with your readings:
obviously there’s going to be more water vapor in the air when it is raining,
snowing, or about to do either. Thus, this gadget is better suited to measuring
upper atmosphere water vapor—water vapor high above what we might think
of as “the weather.” Because of this, the best water vapor measurements are
those made on clear days.

Extracting Data from the LED
Photometer
Okay, so you’ve collected a bunch of data with your LED photometer. What
do you do now?

Graphing Data in a Spreadsheet
Once you’ve processed the data in a spreadsheet, you can graph it. Your
results might end up looking like these charts by Forrest M. Mims, who has
been collecting atmospheric data with an LED photometer in Texas since the
early 1990s (Figure 6-3).

Figure 6-3. Forrest Mims III has gathered this data on total water vapor in
the atmosphere using an LED-based photometer. Image used with
permission.

Using the LED Photometer 71

Notice the patterns in Mims’s decades of data: nearly every reading shows
some kind of seasonal variation. It might take a year or more before you can
see a full cycle in your data.

Sending Data to COSM
You can upload your data for all the Internet to see thanks to a service called
Cosm. Our previous book, Environmental Monitoring With Arduino (O’Reilly),
contains a whole tutorial on getting started with Cosm; for now, let’s just say
that Cosm makes it very easy to upload a CSV data file. Just cut and paste
the serial output of the EEPROM reader program, or use the file DATA-
LOG.TXT from the SD card, and place it on your website. Then go to your
Cosm account and tell it where to find that file. Before you know it, your LED
photometer data will be on the internet, neatly graphed, for all the world to
see.

72 Atmospheric Monitoring with Arduino

http://www.cosm.com
http://shop.oreilly.com/product/0636920021582.do

7/Doing Science: How
to Learn More from

Your Atmospheric Data

Science can be defined as the practice of ob-
serving the natural world, and trying to make
objective sense of it by uncovering facts or
cause-and-effect relationships.
The gadgets in this book detect substances and conditions in the atmos-
phere that otherwise would be invisible to your senses. (Essentially, the
gadgets are technological extensions of your senses.) Building them will help
hone your skills with DIY electronics and Arduino programming. These are
fun, interesting, and practical things to do—but doing them by themselves is
not doing science.

Suppose you’d like to learn more from what you uncover. Maybe you’d like to
measure atmospheric conditions over days or weeks, and then interpret
those readings; or monitor the atmosphere in different parts of your neigh-
borhood, county, or state, and compare that data usefully; or perhaps even
organize people around the world to build gas sensors or photometers, and
compare findings from these different places in meaningful ways. To do these
things, you’ll need to apply some intellectual elbow grease to how you use
your gadget. You’ll have to do some science.

The Scientific Method
The scientific method is the foundation of how most of the serious science
in the world gets done. It’s a systematic process of investigation that tests
ideas about how cause and effect operate in the natural world, helps to re-
duce or eliminate bias, and allows the meaningful comparison of information
from different sources.

The scientific method is appealingly linear in the abstract: an observation
leads to a question, which leads to a hypothesis, which leads to an experi-
ment, which leads to a result, which (if you’re lucky) can lead to another
question, and so the process begins again.

73

Testing hypotheses by gathering evidence is a core concern of science. What
most scientists will tell you, though, is that their work tends not to progress
as tidily as the scientific method looks on paper. More often they move back
and forth between these steps, because science is an iterative process: a
repeating process in which the end result is used as a starting point for the
next run. Researchers often repeat the same steps over and over in order to
test new ideas and tools, to deepen their questions about what they’re study-
ing, and to figure out how to do their research more effectively and accurately.

Researchers also test each other’s hypotheses, because modern science
demands that a result be replicable: that different people conducting iden-
tical experiments can come up with very similar, even identical results. If an
experiment’s results cannot be duplicated independently of the original re-
searcher or team, then those results are cast into doubt.

Still, the scientific method is featured in the early chapters of many a Science
101 textbook because it’s a good jumping-off point for learning how to set up
an experiment and collect data.

Steps in the Scientific Method
At their most basic, the steps in the scientific method go like this:

• Observe something in the world.

• Ask a question about it.

• Formulate a potential answer (a hypothesis) for it.

• Conduct an experiment that tests the hypothesis.

• Compare the predicted result to the actual result:

— Result supports the hypothesis.

— Result doesn’t support the hypothesis.

— Result partially supports the hypothesis.

• Consider the result.

• Ask another question and begin again.

Let’s look more closely at each step.

Observe Something in the World
Observation and exploration of what’s going on in the environment is essen-
tial to figuring out what questions to ask. Asking a question really means
“asking an answerable question,” one that you can then test with an experi-
ment. Testable questions begin with how, what, when, who, or which (“why”
is impossible to answer).

74 Atmospheric Monitoring with Arduino

Ask an Answerable Question
Devising a good experiment question can itself involve several steps. Is your
question uninteresting or interesting? Can it be narrowed down to look at a
single thing, to collect data on one variable only (an observational question),
or to change one variable and learn what results (a manipulative question)?
It’s important to test only one variable—a factor that exists at different levels
or amounts—at a time in your experiment, in order to be reasonably sure
your test and the conclusions you draw from it are valid. If you test more than
one variable at a time, then cause and effect relationships are much less clear.

An example of a testable question that would work with one of the gadgets
in this book is, “When are atmospheric hydrocarbon levels outside my win-
dow at their highest concentration?”

Formulate a Hypothesis
Formulating a hypothesis involves using what you already know to come up
with a potential answer to your question: an explanation for what you’ve ob-
served. It’s not merely an educated guess; it is your formal statement of what
you’re going to test (the variable) and a prediction of what the results will be.

For example, working off the previous question, you could form your hypoth-
esis statement as, “If heavier car traffic increases atmospheric hydrocarbons
outside my window, and I measure those levels from 4 to 6 pm as well as from
4 to 6 am, then I should detect higher levels from 4 to 6 pm, which is afternoon
rush hour.” The IF statement is your hypothesis; the AND statement is the
design of your experiment; the THEN statement is your prediction of what
you’ll learn from the experiment. Since what you’re measuring will be at-
mospheric hydrocarbons, the variable in this experiment is time.

Compare the Predicted to Actual Results,
Considering the Results
On the face of it, this experiment sounds like a no-brainer: rush hour traffic
means more car exhaust means higher levels of hydrocarbons, right? If your
results support your hypothesis, then this experiment may be over.

But what if levels are low during both time periods? Those results fail to sup-
port your hypothesis. It wouldn’t hurt to check your build and programming,
to be sure the gadget is working correctly. Assuming it is, you may need to
ask a new question, or broaden the scope of your experiment—such as taking
measurements more often during the day, or on different days of the week,
or during different types of weather.

And what if you get high hydrocarbon levels from 4 to 6 pm, and also from 4
to 6 am? That’s a partial confirmation of your hypothesis that may lead you
to…

Doing Science: How to Learn More from Your Atmospheric Data 75

Ask Another Question
Maybe there’s something going on in the world around you that you didn’t
know about, like a delivery truck idling on the street early in the morning (we
get that a lot on our street!). Do deliveries happen often enough to affect
hydrocarbon levels most of the time, or just some of the time? To learn more,
you’ll need to figure out the next interesting, testable question, reformulate
your hypothesis, and restructure your experiment.

By testing enough variables (time of day, day of week, month, weather con-
ditions, etc.) you should be able to build up a very accurate profile of the
hydrocarbon pollution outside your window. In fact, you should be able to
predict future events: for example, if tomorrow is a delivery day, you could
confidently predict there will be more pollution than usual. Or if tomorrow is
going to be rainy, there will be less pollution, as the raindrops wash the pol-
lution out of the atmosphere.

When you feel you’ve gotten the pollution profile for your neighborhood down
pat, your work has just begun—now it’s time to measure a different neigh-
borhood! Science never stops!

76 Atmospheric Monitoring with Arduino

Built with Atlas. O’Reilly Media, Inc., 2013.

About the Authors
Patrick Di Justo is a contributor to Wired magazine—where he writes the
magazine’s monthly “What’s Inside” column—and the author of The Science
of Battlestar Galactica (Wiley, October 2010). His work has appeared in Dwell,
Scientific American, Popular Science, The New York Times, and more. He has
also worked as a robot programmer for the Federal Reserve. He bought his
first Arduino in 2007.

Emily Gertz has been covering DIY environmental monitoring since 2004,
when she interviewed engineer-artist Natalie Jeremijenko for Worldchang-
ing.com. Her work has also appeared in Popular Science, Popular Mechan-
ics, Scientific American, Grist, Dwell, OnEarth, and more. She has been
hands-on with Internet technologies since 1994 as a web producer, commu-
nity host, and content and social media strategist.

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. The World’s Shortest Electronics Primer
	What Is Arduino?
	Electronic Circuits and Components
	Programming Arduino
	First Sketch: Make an LED Blink
	Parts
	Install the IDE
	Breadboard the Circuit
	Write the Code
	Things to Try

	Chapter 2. Gadget: Tropospheric Gas Detector
	How Gas Sensors Work
	Which Gases Can We Monitor?
	How This Gadget Works
	Transistorized!
	Build the Gadget
	Load the Sketch
	Displaying and Storing Your Data
	Liquid Crystal Displays
	Reading Data Off EEPROM
	Reading Data from an SD Card

	Things to Try
	Other Sensors
	Solar Powered
	GSM

	Do Not Deploy Your Gadget in Public Without Official Permission
	Get Official Permission
	Get Your Community Involved

	Chapter 3. A Brief Introduction to LEDs
	What Is a Diode?
	What Is a Light Emitting Diode?
	How Are We Using LEDs in the LED Photometer?

	Chapter 4. Gadget: LED Sensitivity Tester
	Mission: Inputtable
	Build the Gadget

	Chapter 5. Gadget: LED Photometer
	Build the Gadget
	Load the Sketch
	Calibrate the Gadget: Air Mass, Atmospheric Optical Thickness, and Extraterrestrial Constant

	Calculating Atmospheric Optical Thickness
	Things to Try
	Detecting “Ozone Holes”: Measuring the Ozone Layer
	Add an Accelerometer

	Chapter 6. Using the LED Photometer
	Atmospheric Aerosols
	Photosynthetically Active Radiation (PAR)
	Water Vapor (WV)
	Extracting Data from the LED Photometer
	Graphing Data in a Spreadsheet
	Sending Data to COSM

	Chapter 7. Doing Science: How to Learn More from Your Atmospheric Data
	The Scientific Method
	Steps in the Scientific Method
	Observe Something in the World
	Ask an Answerable Question
	Formulate a Hypothesis
	Compare the Predicted to Actual Results, Considering the Results
	Ask Another Question

	About the Authors

